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EVALUATION

This effort was undertaken to provide a specification of a Higher Order

Language (HOL) for the Goodyear Aerospace Corporation STARAN parallel,

associative, array computer . This would allow programmers to app ly parallel,

associative and array solutions to computational problems using a HOL.

The benefits of a NOL for a STARAN type architecture are the same as for

a serial computer with the additional benefit that It will aid the programmer

in his thinking toward parallel and associative solutions for his computational

problems. The effort represents the successful completion of one aspect of

RAD C ’s comprehensive investigation into associative processing for Air Force

applications (TPO—12 , FY 75 & 76).

-
~ This was a joint effort by RADC and the Defense Mapping Agency (DMA).

R.ADC arid DMA have a similar desire to derive computational benefits through

the use of parallel, associative, array architectures.

19A~~~~44iJf ~~~~~~~~~
ARNAND A. VITO
Project Engineer
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Introduction

1. INTRODUCTION

This specification document defines a language with paralle l arithmetic
and associative processing features . Statements are defined to support the
des ign of progr ams with arithmetic , logical , and associative processing
aspects. The meanings of operations and expressions extend over single and
multiple element data organizations. The types , organization , and attributes
of data are versatile in their support of the language features .

The language is designed to be useful with the Goodyear Aerospace
Corpora tion TB A ~ (1) computer systc~~. However , no feature of the language
is strictly dependent on the STAR/iN architecture for proper execution.

1.1 Purpose of th e Specification

This specification contains the syntactic and semantic definitions of
the language. A forma l meta—language is used to define the syntax. Semantic
def initions are in prose. Sufficient detail is provided for developing a
coi.ipiler for the language .

Informa tion necessary to write programs is included , howeve r this
specification is not intended to be a language reference manual. It does not
include progranuing examples unless they are useful for specification
purposes. It does not attemp t to show total app lication program development.

1.2 Organization of the Specification

Sect ion 1 , Introduction , gives information which is useful or necessary
for unders tanding the remainder of the specification. The formal nota t ion
used throughou t the document is def ined. No actual language details are
introduced. Section 2, Static Program Structure , gives both the highes t and
lowest level language def inition. At the highest level , program structure is
established. At the lowest level, the lexical syntax is defined.

Section 3 is concerned with data. The data types , organization , and
attributes are specified. Section 4, Data References and Exp ressions , cove rs
the uses of data as operands in expressions and the operators  in the language
are def ined. Dynamic Program Execution , sect ion 5, is concerned with the ru n
time definitions of procedure invocation , parameter passing , block
ac tiva tion , and flow of control.

(1) T?1 Goodyear Aerospace Corp., Akron , Ohio 44315
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Introduction

Specification of control statements is given in section 6. Assignment
and storage allocation statements are covered in section 7. In section 8 the
def inition of files and the input/output statements are given. Section 9
def ines the facilities for signalling a process based on the existence of a
part icular condition or process interrupt.

1.3 Definitions

Terms defined in prose are underlined when defined and not underlined
thereafter. Examp les are prov ided to aid unders tand ing bu t are not in tended
to be comprehensive or definitive.

All exam p les are clear ly Set off from the rest of the text as shown by
the exam ple bel ow. W ithin examples where empty space might be misleading , B
denotes a blank. Upper and lowe r case letters are used freel y in exa m ples to
help distinguish declared variables from keyword s of the language.

1.4 Syn tax N e ta— language

The language is defined using a formal me t a— la n g u ag e  to d e f i n e  the
syntax and prose to describe the semantics. Although this is not a strictl y
formal definition , both the syntactic and seman t i c  d e s c r i p t io n s  a re

4 reasonably pr ecise and comp lete.

The syntax of the language is defined by a set of syntax rules expressed
in a formal notation derived from Backus—Naur Form (BNF) .  Each syn tax  ru l e
descr ibes a c h a r a c t e r — s t r i n g  or p a t t e r n  of c h a r a c t e r s  that c o n s t i t u t e s  a
syntactic construc t of the language proper. The complete set of syntax rules
descr ibes a l l  syn tac t ica l l y correc t programs in the language .

Each rule is of the form :

c a t e g o r y — n a m e  ::= one or more syntactic
expressions

Exam p le:

<f i l e  op tion > ::~ FILE ( <express ion>

In the examp le , <file op tion> is a category—name that represents the
charac t e r — s t r i n g  described by the syntactic expression on the rig h t of the
definition symbol “ : := “. “FILE ” is a notation constant that represents an
a c t u a l  occur rence  of the character—string “FILE ”. The occ urrence of
<expression> is a category—name defined by another rule. The occurrence of (

1—2 
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Inttoduction

• and ) represen t actual occurrences of left and right pa renthesis.

1.4.1 Category—nam e

A c a t e g o r y — n a m e  is brac keted by < and > and contains any sequence of
lowe r case letters and other characters not including > .

Exam ple:

<into option> ::~ INTO ( <reference> )

~Zhen the prose refers to the category—name <into option> or <reference> ,
these terms appear exactly as they do in the syntax rule. ~1hen a keyword ,
such as INTO, appears in the prose , it is enclosed in quotes(”) or written as
upper case to delimit it from the prose.

1.4.2 Prod uction Rules and Syntax

Production rules serve as the declarative port ion of the rietalanguge and
do so by specif ying restrictions on the forms that are acceptable program
text.

A production—rule consists of a category—name , f o llowed by the symbol
“ ::~~

“ and then followed by a syntactic—expression (see Section 1.4.3). The
symbol “ : :~~

“ can be read as “is defined to be”.

Such a production—rule is termed a defining production—rule for the
category—name written before the “::~~

“. Wi thin  th is documen t , there is at
most one defining production—rule for any given category—name .

The basic func tion of a production—rule is to define a set of
possibilities for the number , type(s), and order of the immediate subnodes of

• a node in the syntax tree whose type is the defined category—name . This is
done by interpreting the syntactic—expression of the production—rule
accord ing to the algorithms given below (see Section 1.4.4).

A syntax is any set of production—rules. For examp le , the set of all of
the produc tion—rules in this document is a syntax.

If a defining production—rule for a category—name occurs in a syntax ,
then that category—name is said to be non—terminal. Any category—name tha t
occurs somewhere within the syntactic—expressions of the produc t ion—rules of
the syntax , bu t has no defining production rule in the syntax , is said to be
t e r m i n a l .

‘
S
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Introduct ion

1.4.3 Syn tactic Expressions and Units

Given a syn tax , a syntactic—express ion is defined to be either a single
s y n t a c t i c — u n i t , or several syntactic—units any of the adjacen t pairs of which
is possibl y separated by a “I” or a “s’ . The symbols are called the
or—symbol and the bullet , respec t ivel y.

Given a syn tax , a syntactic—unit is defined to be one of the following :

a sing le category—name ,

a syntactic—expression enclosed in the brackets “ [ “  and “ ) “ ,

a syntactic—expression enclosed In the braces “{“ and “)“ , or

• a syntactic—expression followed by an ellipsis “...“
1.4.4 App lica tion of the Pr od uct ion Rules

Given a syn tax and a category—name , the algorithm shown just below
obtains an (possibl y empty) ordered set of category—names , termed here an
interpretation with respect to the given syntax of the given category—name .

• 1.4.4.1 Catego ry—name  ?leaning

An interpretation of a category —na me is defined as follows:

Case 1.

There is in the given syntax a defining produc tion rule for the given
category—name .

An interpretation is an interpretation of the syntactic—expression
• written following the “::=“ in the defining production—rule.

Case 2.
(Otherwise).

The given category—name is a terminal with respect  to  the given syn tax ;
the interpretation is the empty set.

• 1.4.4.2 Syn tactic Expression Meaning

An interpretation of a syntactic—expression is defined as follows :

Case 1. The syn tactic—expression is a syn tactic—unit.

1—4
p
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Case 1.1 One Instance
The syntactic—unit is a single category—name .

An interpretation consists of the ordered set containing just
this s ing le  c a t e g o r y — n a m e .

• Case 1.2 Option
The syn tactic—unit is a syntactic—expression enclosed in the

brac ke ts “ [“  and “~1” .

An interpretation consists either of an interpretation of the
enclosed syntactic—expression , or of the empty set.

Case 1.3 Grouping
• The syntactic—unit is a syntactic—expression enclosed in the

braces “{“ and “}“ ,

An interpretation consists of an interpretation of the
enclosed syntactic—expression .

Case 1.4 Repetition
The syntactic—unit is a syntactic—expression followed by an

ellipsis “. . .“
• 4 An i n t e r p r e t a t i o n  cons is t s  of one or more i n t e r p r e t a t i o n s  of

the given syntactic—expression.

Case 2.

The syntactic—expression is a sequence of two or more syntactic—units
possibly separated by a “I” or a

Case 2.1 An or—symbol occurs as at least one such a separator.

Consider all or—symbols occurring in the given
syntactic—expression to partit ion it into a sequence of inner
syntactic—expressions. An interpretation is one of any of these
inner syntactic—expressions chosen arbitraril y.

Case 2.2 A bulle t occurs as such a separator and an or—symbol does
not.

Consider all bullets occurring thus in the given
syntac tic—expression to partition it i n t o  a sequence of inner
syntactic—expressions. An interpretation is the same as one of a
syntactic—expression formed by arranging the sequence in an
arbitrary order and omitting these bullets.

1-5
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Case 2.3 (Otherwise).
(The syntactic—expression is a sequence of

syntactic—exp ressions optionall y separated by blanks.)

An interpretation consists of the  c o n c a t e n a t i o n , in order , of
i n t e r p r e t a t i o n s  of the  syn tac t i c—express ions  of the sequence.

In summary the syntactic expressions are built using the following
meta—operations.

Syntac t ic Expression Operation Symbol

Catenation “spaces”
Alternation I

• Repetitio n
Grouping { )
Op tional
Unordered Catenation s

Note:

• In the language specification the use of left—recursive prod uc tion rules

4 for category—names is avoided , although that form with the additiona l
* category—names as required is u s e f u l  f o r  imp lementa t ion .

1.5 Addi tional Conventions

Common mathematical symbols are used with their usual meaning. In
addi t ion , the following notational conventions arc used :

* denotes multiplication;
/ denotes division;
ceil(x) denotes the smallest integer

larger than or equal  to x;
floor(x) denotes the largest integer

• smaller than or equal to x;
tnin(x,y) denotes the value of x if x < y,

otherwise the value of y;
• m ax (x ,~ ) denotes the value of x if x > y,

otherwise the value of y.
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1.6 Implementa tion Defined Properties

The following list shows those items or situations in the language which
are  def ined b y the imp lementation rather than by t h e language. They may be
user controllable or absolutely bound by the imp lementation.

1. Determination of actual da taset names (8.3.2) on file opening.

2. E~:vIRo1a1ENT attribute and option syntax and semantics (8.3.1.9).

3. Standard action for conditions (9.2).

4. Si tua t ions  when STORAGE condition is raised (9.2).

5. Actual r ep resen ta t ion  of a dataset.

6. The size of a RECORD.

7. Situations in which TRANS IIT condition is raised.

8. Raising of RECOP5D condition by WRITE statement.

9. Position of records in a KEYED SEQULETIAL file.

4 
10. Length of a record KEY (8.3.1.8).

• 11. 1laximum precisions of arithmetic data (4.4.1).

• 12.  Determination of floating—point results of expressions and
bu iltin functions (4.4.1.2 , 4.7).

13. Character collating sequence (4.7, COLLATE).

14. Exact results of numeric convers ions (4.7).

15. Number of digits (bits) in the exponent of
• • a floating—point data item.

16. Situations when ERROR is raised.

I 
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The format of DEFINED is:

DEFINED (reference)

The <extent> expressions of a defined variable are evalua ted u~x n  block
activation and saved in the block activation record; see section 3.6.2 for
the rules on the extents of automatic variables.

A defined variable is always associated with the generation identified
by its <reference) —this is known as its base <reference>. The defined
variable is never allocated and thus has no <initial> attribute. The
variable identified by the base <reference> cannot be a defined var iable or

• nam ed constant ((constant> attr ibute) .

The <defined attribute> cannot be specif ied for merrbers of structures.
When specif ied for a structure , it maps the entire structure onto the
generation of storage identified by the base <reference> .

The (express iori>s contained in the base <reference> are evaluated u~~n
• each reference to the defined variable. Any <reference>s within the base

(reference> are resolved in the <block> in which the defined variable is
4 declared. Refer to section 4 for a conpiete discussion of <reference>
• resolution and evaluation.

Both the extents of the defined variable and those of the base var iable ,
are used to determine if any condition has occurred; these are
subscriptrang e, str ingrange, and str ingsize (refer to section 9).

3.3.6.3 I—sub Defining

I—sub defining allows an array to be def ined onto another array by means
of a progr ammer—defined mapping between the elements of the defined ar ray arid
its base array .

For i—sub defining the <reference > must contain one or more <i—sub>s in
its (subscr ipt>s.

For i—sub defining, the fon t of the <reference> defines the relationship
between elements of the defined variable and elements of the base variable.

• The subscript expression selects an element of the base variable for each
allowable combination of subscripts of the defined variable. If
SUBSCRIPTRANG E is enabled for a reference to the defined variable , the
subscripts are chec~ced against the bounds of the defined var iable , then the
i—sub expression is evaluated and the resulting subscripts are checked
aga inst the bounds of the base variable. Each <subscr ipt> value is converted
to a binary integer (FIXED( 15, C ) )  before replac int3 an <i—sub> .

3—6

- - •



r~ Data

The aggregate type of an expression is the dimensionality, array
extents, and structuring determined by the rules of expression evaluation and
aggregate promotion given in section 4.

3.3.6 Sharing of Storage

There are two facilities specified in the language for sharing a
generation of storage among two or more var iables. These are par ameter s and
defined var iables . These fea tures r equire that the var iables which share a
generation of stor age have identical data types and alignment <attr ibute>s ,
thus providing a guarantee that the va~ i ables have identical storage
representations.

Both facilities provide techniques for sharing a generation of storage
that is contained in an aggregate generation without having to share the
entire aggregate. For example , scalars can be mapped onto array elements or
members of structures and arrays can be mapped onto portions of ar r ays or
ar rays of structures.

3.3.6.1 Storage Sharing by Parameters

There are several possible forms of paramete r passing in programming
languages. This specification of argument passing in section 4 describes

4 argument passing by—value and by—reference. When a variable is passed
by—reference to a par ameter , the variable and the parameter refer to the same
generation of storage and thus share that generation .

Example:

sub: PI~)CEDURE(p) ; ... ENDP1~ C sub;CALL sub(a);

The execution of the CALL statement invokes sub. During the block activation
of SUB A and P both refer to the same generation of storage.

3.3.6.2 Array Storage Sharing by Defined Variables

The <defined attribute> is provided with “i—sub defining” to map a
defined variable onto a generation of storage of another variable. The
latter may ~e an array or an array of structures.



Data

3.3.3 Structures

A structure is an ordered set of data elements which may have different
attributes but must have <level> specified in the <declaration conponent>s.
The elements may be scalars or arrays. A hierarchical relationship exists
among data elements of the structure. The relationship is indicated by the
relat ive values of the level numbers in the declaration .

For a given pair of <declaration component>s with equal <level > nwrbers ,
the data iterr s are on the same hierarchical level . If the second <level >
number is larger , its (declaration component> is nested within the f i rs t .  If

• the second <level> number is smaller than the f irst , the first
<declaration component> is nested within the second. The main structure
(root) is a (declaration component> with <level > that is not subordinate to
any declaration component> and is said to be (hierarchically) at level—one.
Nested structures are the subordinate (declaration component> items and are
at higher numbered “level ”s.

A variable is defined to be a level—one variable if it is a main
structure or a declared variable that is not a structure . Thus scalars and
arrays which are not in a structure are level—one variables.

The main structure, nested structures, and the data elements have nar.es.
Qualification is used to uniquely identify a nested structure or data element
name . A q~alified name consists of the name of the main structure and all
nested structures leading to the structure or data element name to be—
identified , with per iods between each pair of names .

3.3.4 Arrays of Structures

An array of structures is a structure with the attr ibute <dimens~~~~
Each element of t1~è array is thus a structure with structuring identical to
all other elements. 4-

3.3.5 Data Aggregates

An aggregate value is a set of scalar values. An aggregate value ..as an
array of scalars , a structure, or an array of structures. Named constants,
variables, functions, and expressions can have aggregate values.

The data type of an aggregate value is the ordered set of data typer of
its scalar components. The aggregate type of an aggregate named constant,
var iable, or function value is the dimerisionality and array extents specif ied
by the <dimension> attribute arid the structuring specified by the (level)s
used in its ôeclaration.

3—4
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3.2.4 Bit—string

A bit—str ing data item represents a bit—string value stored as a
contiguous sequence of bits .

The attr ibute for declar ing a bit—str ing data item is <bit> . The
<length) attr ibute is used to specify the number of bits in the sequence.

3.2.5 Charac ter—string

A character—string data item represents a character—string value stored
as a contiguous sequence of characters. Characte r data is represented in the
ASCII code.

The attribute for declar ing a character—string item is <character>. The
(length> attribute is used to specify the number of characters in the string .

3.3 Data Organization

The language has several modes for data items, either single items
called scalars or collections. The latter are referred to collectively as
aggregates.

3.3.1 Scalars

A scalar is a single element of data or one member of a set of data
elements . A scalar may appear in a program as a constant or as a var iable
representing one element of data.

3.3.2 Arrays of Scalars

An array is an ordered set of scalar s, all having identical attributes.
An array is identified by a single symbolic name. An array appears in a
program as a var iable representing a set of scalars.

An array element is a scalar . The unique identification of an array
element consists of the array name and the position of the element in the
array . The position in the arr ay is indicated by a bracketed subscript list
following the name as specified in section 4.2.

The elements of an array are stored as an ordered sequence such that the
rightTcst subscr ipt varies most rapidl y and the leftmost subscr ipt var ies
least rapidly. This order is called row—major order and is consistant with
arrays of structures , section 3.3.4.
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3.2.1 Cardinal

A cardinal data item represents an unsigned integral value stor ed a~ a
binary number; therefore, cardinal data may assume only zero or positive
integral values.

The attribute for declaring a cardinal data item is <cardinal>. The
<precision> attribute is used to specify the number of bits of precision for
the data item.

3.2.2 Fixed—point

A fixed—point data item represents a signed , real value stored as a
binary number with an assumed binary point. Fixed—point data may take on
negative , zero , or positive values .

The attr ibute for declaring a fixed—point data item is <fixed>. It must
be followed by the (precision > attribute or the (range> attribute to define
the set of values for the data item.

The <precision> attribute is used to specify the number of bits of
precision for the data item and the scale factor. The scale factor indicates
the location of the assumed binary point.

The (range> attribute, if written, specifies the smallest and largest
values for the fixed—point data and the significance required for
intermediate values. The latter is determined by the (scale factor > as a
function of the <scale> option of the <range> attribute (see section 3.6.19) .

A fixed—point integer is a fixed—point data item with a scale factor of
zero.

3.2.3 Floating—point

A floating—point data item represen ts a signed, real value stored as a
signed mantissa with a signed exponent.

The attribute for declaring a floating—point data item is <float> . The
<precision> attr ibu te is used to specify the number of bits of precis ion for
the mantissa of the data itei~..

3—2
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3. ~~TA

3.1 Variables and Constants

A variable is a data i tem which may change in value during the execution
of a program. A constant is a data item which cannot change in value.
Reference to a data item is made by the use of a symbolic name or the
occurrence of a literal constant in a program. A variable appears in a
program as a symbolic name. A constant appears in a program either as a
literal constant or as a named constant. The syntax for literal constants is
specified in section 2. Named constants are defined with the (constant>
attribute.

3.2 Data Types

Data is separ ated into computational arid non—computational categor ies.
The types of data in the non—computational category are “entry ” and “file ”.
They are primarily specified in sections 5 and 8, respectively. Five types
of computational data are defined. Each type is dif ferent  in internal
representation and in the values it may assume . The specif ication of data
types is concerned with the abstract properties of the data rather than the
internal representation. Thus the storage r eauiremen ts for each type are not
specified.

Computational data is further separated into arithmetic and string
types.

Arithmetic data types are:
(1) cardinal
(2) fixed—point
(3) floating—point

String data types are:
(1) bit—str ing
(2) character—str ing

Ar ithmetic data is represented in a binary base. Str ing data is a
contiguous sequence of bits or characters.

The term extent is used to reference the precision of arithmetic data,
the length of string data, and/or the dimensions of an array.

3—1
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S t a t i c  Prograit  S t r u c t u ro

ALLOCATIOI ALLOCN
CIIAP..ACTER CHAR
CONDITION CO~DCO:;Tr OLLrD Cm
E~-~vIRoN:i!;T E::V
FIXEDOVE RFLOI .’ FOFL
NOCO~VERSIO~ NOCONV
NOFIXEDOVELFLDW NOFO FL

~oovtRFLo~: NOO~L
Z~OSTRINGRA~GE NOSTRC
N OSTR IN CS IZE NOSTRZ
Z;OSUB SCRIPT RAr~CE NO S!JEP~C
NOU flDLRFLOU I~OUFL

• NOZE R ODIV IDE I~OZDIV
P1~LCIS lOI PREC
SEQUE~ T1AL SEQL

• STFJNCRAI;GE STRC
STRIN CSIZE STRZ
SUBSCRIPT RAI CE suBr .c
1JNALIG~ED U I A L
UNDER ~LO~ UFL
UI DE FINEDFI LE CN DF
ZER ODIVIDE ZDIV
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The (exponent> of a decima l <floating—point cons tant> denotes a power of ten .

2.5.5 I—subs

An <i—sub > is a ctokem> used only in a <subscript> of a <base reference>
in a (defined> attribute. Its semantics are described in sec i ion 3.3.6.

Syntax :

<i—sub> ::~ <decima l integer> SUB

Examp le:
I SU B

2.6 Reserved Words

A small number of the language keywords are reserved and may not be
declared as user names. The reserved keywords  are p r imar i l y those  related to
prog ram s t r u c t u r e .

PROCEDURE ENDP ROC DO C;DD0
ENDO~: ROUTI N E

IF IFARRAY THEN ELSE E~TDIF
4 DECLARE SUB CASE EN DCASE

2.7 Keyword Abbreviatio ns

• Abbreviations are defined for certain keywords and builtin—functions The
abbrev iations themselves are keywords or builtin—funct ions and will be
recognized as synonyiaous in every respect with the full denotations , excep t
that in the case of builtin—functions the abbreviations have separate
declarations and name scopes. The abbreviations arc shown to the ri gh t  of
the full denotations in the following list.

2—9
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A (Cv i  express ion) is defined to be a constant—v alued expression (see
section 4.3.2).

Syntax:

<character—string constant> ::~ [ (<cvi exp ression>)
‘ (<character>]... -

A null character string is denoted by ‘‘. The character • is represe nt ed
within a character string by ‘‘.

Examp le:

• Source s t r i ng  Charac te r  value
‘abcd ’ abcd

‘abci ’’ef’ abcd ’cf
9 ‘ab ’ ‘ ‘ ‘ab ’

2 .5 .4 .3  Arithmetic Constants

An <aritkuiietic constant> is defined to be an arithmetic value that
4 remains constant and canno t be changed. The attributes of the constant ,

i.e., type and precision , are normally de termined by the constant ’s syntax.

Syntax :

<arithmetic constant> ::~ <decima l constant>
I (binary fixed—point constant>

<binary fixed—point constant>
(O i l ) . . .  [ . [ ( O I l ) . . .  I I L
I . (Oil)... B

- 
- - <decimal constant> ::= decima l f ixed—point constant>

I <floating—point constant>
<floating—point constant> ::— <nantissa> exponent>
(mantissa> ::= <decii~al fixed—point cons tant>
<exponent> ::= E[+ I —] decitaa l integer>

<uecima l f ixed—point constant> : :=
<dec imal in teger >

[ . [ decima l integer>]
I . <decima l integer>

<decimal integer> ::~ <digit>...

2-8
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2.5.4 Literal Constants

A (literal constant> is used for an arithmetic or string va lue.

Syntax :

<literal constant> ::— <bit—string constant>
I <character—string cons tant>
I (ar i thmet ic  cons tan t>

2.5.4.1 Bit—String Constants

A <b it—string constant> is defined to be a sequence of zero and one bits
• 

• derived from the zero and one binary digits of the constant within quotes. If
the opt ional <cvi expression> is present , the string of zero and one bits is
concatenated to itself N — i  t imes , where N is the value of the
<cvi expression> and is an intege r greater than zero.

Syntax :

<bit—string constant> ::~ ( (<cvi  express ion>)  I
{ B ‘ <bit chars> ...

I Q ‘ <quad chars>...
I 0 ‘ <octal chars> ...
I X ‘ <hex chars> ... ‘ }

<bit chars> :: 0 I 1 I <space>
<quad chars> ::= 2 3 I <bit chars>
<octal chars> ::= 4 I 5 I 6 I 7 I <quad chars >
<hex chars>::= 8 I 9 I A I B L C I D I E I F

I <octal chars>

The four forms of <bit—string constant> allots 1, 2, 3, or 4 bits to be
specified by each source “digit”. The space>s can be used to forma t longer
constants for readability .

2.5.4.2 Charac ter—String Constants

A <character—string constant> is defined to be the sequence of
charac te r s  derived by substituting a single quote for all double quotes , and
deleting the containing quotes . If the optional cvi expression> is present ,
the resulting string of characters is concatenated to itself N—i times, where
N is the value  of the <cvi expression> and is an integer greater than zero .

2-7
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Sta tic Program Structure

Syntax:

<delim iter> ::~ (grap hic delimiter> space> I <comment>
<grap hic delimiter> : : =  + I — I * I / I — I

I : I ; I ( I ) I .1. I J.J_
1 , 1 . 1 1 1 1
I I I ~~~~~ I
I I I I

<space> :: <blank > I <newline> I <newpa ge> I < t ab >
<b lank > ::= ASCII blank character
<ncwl ine> ::~ ASCII  new line c h a r a c t e r

• <neupage> ::= ASCI I new page character
<tab> ::= ASCII horizontal tab or ASCII vertical tab

<comment> ::~ 1* ASCI I characters  except an asterisk
fol lowed b y a slash */

The <space>s and <cotimcnt>s can be used anywhere withou t restriction on
the length of a <comnent> or the number of space>s between any two <tokcn>s .
Whenever ad jacen t  < i d e n t i f i e r > s  or <literal constant>s occur in the syntax
rules, at least one <space> or (comment> must be used to separate them .

The individual usage and semantics for the <graphic delimiter>s are
given in subsequent sections of the specification .

2.5.3 Identifiers

I d e n t i f i e r s  are used f o r  <declared name>s or keywords.  A keyword
introduces a s t a t e m e n t , a statement option , or a builtin function .

Syn tax:

< i d e n t i f i e r >  ::~ < l e t t e r’
I < l e t t e r >  I digit> I — I $ ) . . .

• <le tt er> ::~ A I B I C I D I E I F I C I H I I
I J I K L I 1-I I I o I I Q I R
I S I T I U I V I W I X I Y I Z

<digit> : : — 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I B I 9

A single < i d e n t i f i e r >  cannot be more than 32 characters long.

2—6
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2.4.2 Statement Prefixes

Syntax:

(pr efix> ::— <label pref ix> I <case prefix>
(label pref ix> ::~ (identifier>:
<case prefix> ::~ CASE ( <case number >
<case number> ::~ <cv i ex p ress ion>

I <cvi express ion> : <cvi expression>

A <label p r e f i x >  is a means of naming a s t a t e m en t .  In c e r t a i n  contexts ,
such as within a loop , any <bas ic  s t a t emen t>  may be named by bei ng preceded
by a <label pref ix >. A (cvi expression> is defined to be a constant—valued
expression (see section 4.3.2).

2.5 Lexical Syntax

2.5.1 Text

The lowest level syn tactical component of the language is called a
<token> . Sequences of < tok en>s  form s t a t e m e n t s  which in turn forni

• <program unit>s.

Syntax:

<token>  :: < i d e n t i f i e r >  I <literal constant>
I <delimiter> I ( i—sub>

2.5.2 Delimiters , Blanks, and Comments

2—S
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2.4 Statements

The f u l l  s y n t a x  and semant ics  of the Sta temen t s  of the  language are
given in sections 3 and 5 t h r o u g h 9. In t h i s  sect ion , onl y the general
n a t u r e  of s t a t ements  is discussed and r e f e re n c e s  to o the r  re levant  sec t ions
of this docum en t arc p r o v i d e d .

There are two types of statements: declarative statements and procedural
statements. There is one declarative statement , the <declare statement> ,
fu l ly discussed in section 3. The execution of a <declare statement> or

• <null statement> has no effect , even though all statements are cons idered to
be executable .

2.4.1 Procedural Statements

-~ The procedural statements are used to form the executable statements of
a <program unit> in accordance with the syntax rules in section 2.2. Some of
them represent ind ividual statements , whereas t h e  <if statement> , for
examp le, must include a corresponding endif> . The individual statements are
called <single statement>s and are listed below.

• Syntax :

<single statement> ::~ <allocate statement>
I (assignment statement>

• • I <call statement>
- I <close statement>

I <delete statement>
I <free statement>
I <goto statement>
I <null s t a t emen t>
I (open s t a t em e n t >

• I <read statement>
• I (r e tu rn  s t a t e m e n t >

I < rever t  s t a t em e n t >
I <rewrite statement>
I <signal s t a t e m e n t >

f ~ I <wr i te  s t at e m e n t >

The “ ; “ symbol is used to delimi t statements.

là
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Exa mp le:

MAIN : PROCEDURE ;

SECOND : PROCEDURE ;

ALT: ROUTINE;

UTILITY : PROCEDURE ;

EKD PROC UTILITY ;

ENDPROC SECOND;

EN DPROC MAIN;

hAIN is the <external procedure> and contains one <procedure> named SECOND at
lexical level two. The latter has another routine (an entry ) ALT, and also

4 contains a <procedure> named UTILITY at block level three .

2 .3  Groups

A <gr o u p >  is a list of statements that are bracketed to control the
program f l ow during execution.

Syntax :

<group> ::— <iterative loop>• I (repetitive loop>
I <case group>

The semantics of group> s are contained in section 6.

E Each <gro up> is headed by a form of the DO statement. The DO statement
is the keyword DO followed b y an itera tive loop speci f ica tion , a repe titive
loop specif ication or a case selection expression.

2—3
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S t a t i c  Program S t r u c t ur e

Syntax :

block > :: (procedure>
(proced ure> ::— <procedure statement>

<procedure  body >
<endproc statement>

<procedure body> ::~ <p rocedu re comp onen t>
<rou tine statement>
<procedure component> 1...

<procedure component> ::~ <statement> ...
(statement list> ::~ statement>...
<statement> : :~ <procedure>

I <declare statement>
I <basic s t a temen t>

- • I <pref i x><basic  s ta tement>
<basic statement> : :—  <group>

I <independent statement>
<independent  s ta tement> ::a <sing le s t a t emen t>

I <condi t iona l  s t a t e m e n t >
I <Ofl S ta tement>

-~ All of the text  of a <procedure> , except  the <label pref ix>b ’of each of
i t s  (rou t ine  s t a t en e nt > s  and the <closure ident if ier > of its

4 <cndproc statement> , is contained in the <procedure> .

Example:

LOOK : PROCEDURE ;

SEARCH :
ROUT I:: E~.

E~.DPROC LOOK ;

The text shown with lines is contained in <procedure> LOOK.

The text contained in <block> LOOK , but not contained in any other

<block> con tained in LOOK , is immediately contained in <block > LOOK .

2-2
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2. STATIC PROGRA!1 STRUCTURE

2.1 Programs

A <program> cons ists of one or more <program unit>s together with their
environment; chi c latter is an implementation dependent context which includes
a file system. A <program unit> is the largest syntactic construct of the
language; it is also the unit of input for compilation .

The set of (program unit>s that constitute a <program> is determined
dynam ically by CALL statements and function references during execution of
tile program as described in section 5, or by the use of a l inking f a c i l it y
prior to or during execution. The use of the latter would restrict the set
of <program unlt>s to a statically specified set.

Syntax :

<program> ::— <program unit)...
• <program unit> :: <external prOcedure>

(exte rnal procedure> ::— <procedure>

An (external procedure> is one not contained in another procedure. A
<program unit> is always an external <block> .

2.2 Blocks and Block Structure

A <block> delimits the scope of names in an <external procedu re> and is
the major unit that determines the flow of control during program execution.
Refer to section 3 for the description of the scope of names and to section 5
for the specification of the flow of control.

r 
A <block> is an entire <program unit> ( <external procedure> ) or any

(procedure) contained in another <procedure> .
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Data References and Expcessions

• The order in which operands are promoted to higher aggregate types.

a The order in which the scalar data elements of aggregate operands
are operated upon by infix or prefix operators.

a The order in which <function reference>s are evaluated and number
of t imes a reducible <function reference> is evaluated .

4.1.4 Reducibility and Side—effects

A <procedure> may contain expressions which are identical in effect.
If , during execution of the prog r am , the values of the operands are not
ucdified between evaluation of the expressions, such expressions are conmon
expressions.

If the value of an operator can be determined without evaluation of one
or more of its operands and no operand contains irreducible
<function reference>s, the operands are not necessarily evaluated.

• A <procedure> that depends on the full evaluation of all operands or
upon an operand not being evaluated, is in error and the result of its
execution is undefined .

Example:

These statements are in error :

if B=0 I 1/B > N then

if length(S)=C I substr (S, ... ) then

4.1.5 Exceptions in Expression Evaluation

The facility of <on unit>s and the <on statement> allow prograirri~ r
specification of certain exceptions that can occur during the evaluation of
references and expressions. Refer to section 9.1 for a full discussion of - •

conditions.

Since the order of (expression > evaluation is not strictly definec3, the
order in which conditions are detected and the frequ ency with which they
occur are not defined .

If a condition is signaled dur ing <expression> evaluation, the latter is
suspended as it would be for the execution of a (signal statement>. See the
description in section 9 regarding whether control can return from the
<on unit> to the point the exception occurred. For most conditions control
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Data References and Expressions

Associative operators of equal precedence are evaluated in an
unspecified order to allow optimization . The operators with this property
are: + * I & . Nonassociative operators of equal precedence are evaluated
from left—to—right, except for prefix operators which are evaluated from
right—to—left.

For an <expression> the precedence of all operators is:

High
I prefix + prefix — **

* /
I infix + inf ix —

I I I
I = — = < 

_
< > 

_
> <= >=

I &
Low

Implicit conversions are not provided generally, only a ubset of the
above operators are allowed in a given context according to the data types of —

the oper ands (see section 4.5.1). For example , if all (reference>s have the
data type bit—str ing, the operators allowed and their precedence is:

High 
-

I I I
I = < < > ~ > <= >
I &

Low I

If all the data types are arithmetic , the operators allowed and their
precedence is:

High
I prefix + prefix — **
I * /
I infix + infix —

Low = — = < ~< > > <= >=

The order of operator evaluation within  <expression>s is determined by
the precedence of operators (section 4.3) and by parenthesization. Otherwise
the order of evaluation is not defined . A procedure that depends on any of
the following properties is in error and the results of its execution are not
def ined:

a The order in which associative operators of equal precedence are
evaluated.
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4.1.1 Eval uation of Expressions

6asic expressions contain only a <reference> or a (literal constant>.
The evaluation of a basic expression proãuces a value with aggregate type and
data type deter~r ined by the declaration of the name identified by the
<reference> or the declaration of the <literal constant>. If the basic
expression is a <fun ction reference> , the aggregate type and data type are
the aggregate type and data type of the value returned by the function, that
is, those declared with the function entry.

The basic expression evaluation produces the value of the var iable or
constant identified by the (reference> or <literal constant>. If the basic
expression is a <func tion reference> , the value of the evaluated basic
expression is the value returned by the function.

4.1.2 Evaluation of Prefix and Inf ix Expressions

The operator evaluation consists of :

1. The evaluation of the operand(s) .

2. For infix expressions the two operands are promoted to the

4 higher common aggregate type as descr ibed in promotion, section 4.6.

3. The conversion of the value of the evaluated operand(s) to the
type required by the operator (if automatic conversion is def ined , see
section 4.5). If either promoted operand is an aggregate, the operator
is applied to each (corresponding) scalar component in an unspecif ied
order .

4. The application of the operator to the converted value of the
operand. If the operand is an aggregate, the operator is applied to
each scalar component of the aggregate.

The result of the evaluation of a prefix expression is a value whose
aggregate type is the aggregate type of the evaluated operand. The data type

• of each scalar component of the result is the data type of the corresponding
scalar component of the operand .

4.1.3 The Order of Operator Evaluation

Operator evaluation in an (expression > is performed in an order
determined by the syntactic precedence of the operators (see 4.3) . It can be
overridden as needed by use of parentheses around subexpressions within the
expression.

4—2
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4. DPTA REFERENCES AND E)~ RESSIONS

An expression represents an algor ithm used for computing a value.
Expressions are of three types: scalar , array , and structure , depending upon
the aggregate type of the result. An array (or structure) expression is an
array (or structure) evaluated by expansion of the expression into a
collection of scalar expressions and interpretation in an undefined order.
Syntactically, an expression consists of a constant , a var iable, an
expression enclosed in parentheses, an expression preceded by a prefix
operator , two expressions connected by an infix operator , or a function
reference that returns a value . In a few cases, operands in an expression
need not have the same data attributes. If they differ , conversion is
performed before the operation.

There are three forms of (sub— )expressions related to the operators
contained in them: basic expressions , prefix expressions and infix
expressions. A basic expression is a single <reference> or
<l iteral constant> , a prefix expression is a prefix operator with one
operand, while an infix expression is an inf ix operator between two operands.
An operand is one of the three forms of <expression>s.

Examples of the express ions:

basic expression b xlii
s.t func tion (x , y)

infix expression a * b x + 1
a * b + c * d

pref ix expression — n - state

4.1 Expressions

Expressions always ~~ve values of .he same data type and aggregate type,
except possibly for d~.i fer ing array—ei ~nts, thus they are characterized by
these two properties. They are refered - in this specification as: scalar
<expression>s, array <expression>s, struc . re <expressicn>s, etc.

The data types for an <expression> are described in section 3.2 and the
aggregate types are specified in section 3.3.
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3.7.3 Default Attr ibutes

Every scalar , array , and fully qualif ied structure name must have an
<attribute set> associated with it in a <declare statement> . The <attribute>s
may be declared explicitly, however certain <attribute>s will be assumed as
defaults or implied if the <attr ibute set> is incomplete.

Section 3.5.2 provides the syntax for <attr ibute set> and (attribute>.

This section specifies the defaults and implications for category names in
the production of <attribute>. The table below lists the category names, the
action or <attr ibute> if the category name is not explicitly declared , and
the <attribute>s implied by the explicit declaration of the category name.

Category Name Default Implied Attribute

<storage class> <automatic>
- <alignment> compiler selected

<constant> var iable
<dimension> scalar item
<external> internal <static>
<memory> compiler selected

There is no defined default for <data type>, <initial>, <precision> ,
4 <range> , or <length>.

I
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Att ribute Conflicting Attr ibutes

<aligned> <unaligned>
<automatic> <controlled> , <external> , <static>
<bit) <cardinal> , <character> , <fixed i,

<float> , <precision> , <range>
<cardinal> < bi t> , <character > , <fixed > , <float> ,

<leng th> , <varying>
<character> <bit> , <cardinal> , <fixed> , <float> ,

<precision> , (range >
<constant> none
<controlled> <automatic> , <static>
<dimension> none
<external> <automatic>
<fixed> <bit> , <cardinal> , <char acter> , <float>,

<length>, <varying>
<float> <bit> , <ca rdinal> , <character> , <f ixed> ,

<length> , <varyi ng> , <range>
<initial> none
<length> <cardinal> , <fixed> , <float>
<memory> none
<precision> <bit> , <character> , <varying>
<range> <float>, <bit> , <character> , <varying>
<static> <automatic> , <controlled > ,

I - <unaligned> <aligned >
<vary ing> <ca rdinal> , <f ixed> , <fl oat> ,

<precision> , <range>

3.7.2 Required Attribute Set Members

A <data type> or <range> attr ibute is required.

The arithmetic data type attributes <cardinal> and <fixed> require the
attribute <precision> or <range> ; and the data type <float> requires the
attribute <precision>.

The string data type attr ibutes <bit> and <character> require the
attribute <length> .

The <constant> attribute r equires the attribute <initial> .
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Storage allocation for a data i tem declarec~ with the at tr ibute
<unaligned> is not required to be aligned on specific boundaries.

3.6.22 Varying

Syntax :

<vary ing> : : VARYING

An item declared with the attribute <varying> represents a string data
• type whose length may vary af ter allocation and may be any value from zero to

a maximum of the <length> specified in the declaration .

3.7 Data Attribute Sets

The descr iption of each <attribute> is given independently of other
members of the <attr ibute set> . A particular <attr ibute> may conflict with
another <attribute> such that they cannot belong to the sane <attribute set>.
Al ternatively , there are some <attr ibu te>s that require a particular
<attr ibute> in the same <attr ibute Set> . These conflict ing or required
<attribute>s are specified in 3.7.1 and 3.7.2.  Defaults exist for certain
<attr ibute>s in an <attr ibute set>. The defaults are specified in section
3.7.3.

3.7.1 Conflicting Attribute Set M~nbers

The table below indicates, in the row direction , all attr ibute>s which
conflict with the <attribute> in the column on the left.
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<low value> ::= <cvi expression>
<high value> ::= <cv i expression>
<scale) ::= <cvi expression)

A name declared with the range attribute specifies an enumeration of
fixed—point values and has two uses. One is in declar ing the range of values
fo r f ixed—p oint  data items , i.e. either <range> or <precision> can be
written. In this context the optional parameter (scale> is allowed.

The other use of (range> is to specify a name for a set of values in any
context where it is meaningful such as in a <case prefix> or as a subscript
to select a cross—section of an array.  In this usage the <declar ed name>
does not have <data type>.

The expressions for <low value> and <high value> are integers defining
the limits of the closed interval of values .

In the context of precision for fixed—point var iables, the <scale>
par ameter indicates the minimum significance required in computations; the
<scale factor) to be used is CEIL(3.32* v) where v is the value of <scale>.

3.6.20 Static

Syntax:

<static> ::= STATIC

I
A variable declared with the at tr ibute <static> is a var iable which has

stor age allocated at or before the t ime that the variable is f i rs t
referenced . The variable remains allocated until  termination of the
<pr ogram> .

All <extent> expressions and <initial> attributes for static varialbes
must be constant valued since the var iables may be allocated prior to
exeuction of their containing block.

3.6.21 Unaligned

Syntax:

<unaligned> :: UNALIGNED
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3.6.17 Memory

Syntax:

<memory> ::= ME!’DPY( <memory type>
<memory type> : : = MDA MAIN

The <memory> attr ibute specifies the type of memory in which storage for
the <declaration component> will be allocated. The <memory type> ~~~ will
cause allocation to be in the multi—dimensional access, or array,  memory . The
<memory type> MAIN will cause allocation to be in the main, or control
memory.

3.6.18 Precision

Synt ax.

<precision> ::= ( <number of digits>
[ , <scale factor>

<number of digits> ::= <cv i expression>
<scale factor> ::= [+ 1 —) (cv i expression>

The <precision > attribute specif ies the prec ision of ar ithmetic data
types. For cardinal or fixed—point data, the <precision> attribute specifies
the number of bits sufficient to express the magnitude of the values. For
floating—point data, <precision> specifies the number of bits in the
magnitude of the mantissa.

The <scale factor> specifies the position of the assumed binary poin t
for fixed—point data. The point is located to the left of the rightmost bit
when the <scale factor> is positive and to the righ t of the r ightmost bit
when the <scale factor> is negative. If the <scale factor > of a data item
with the (fixed> attribute is zero or is omitted, the data item. is a
fixed—point integer. If <scale factor> is present, the data itei~ must have
the attribute <fixed> .

3.6.19 Range

Syntax:

<range> ::= RM~3E ( <low value>
: <high value> [, <scale> )
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3.6.14 Float

Syntax:

<float> ::= FLOAT

A data item declared with the attribute <float> represents a
floating—point arithmetic value. The <precision> attribute without a “scale

— factor” is required for floating—point data.

3.6.15 Initial

Syntax:

<initial> ::= INITIAL <initial list>
<initial list> ::= ( <initial item>

,<initial item]...
<initial item> ::= [<factor>]<initia]. value>
<factor> ::= ( <cvi expression>
<initial value> ::= [+1—] <literal constant>

4 The <initial> attribute specifies a set of scalar values that are
assigned in order to the scalar components of the declared var iables . The
number of scalar values given in the <in itial list> must be equal to the

• number of scalar components in the <declaration component> with the <initial>
attribute. A name that appears in a <parameter list> may not have the
<initial> attribute.

3.6.16 Length

Syntax:

<length> ::= ( <string length>
<string length> ::= <cvi expression> I *

The <length> attr ibute specifies the length of string data types . For
bit—string data , <length> is the number of contiguous bits in the string. For
character—string data , <length> is the number of contiguous characters in the
string . The <cv i expression > must be greater than zero.

The <string length> may be an asterisk only for names which appear as
parameters in a <parameter list> of a <procedure> in which the name is
declared.
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The <dimension> attribute specifies the extents of the dimensions for
data organized as an array or array of structures. If one <extent> is given
it represents the upper bound of a one dimensional array. If two or three
<extent>s are given they represent the upper bounds of each dimension of two
or three d imensional arrays , respectively. Any <extent> written as an
<expression> must evaluate to a fixed—point integer. The lower bound for all
dimensions is one.

The (extent> may be an aster isk only for names which appear as
parameters in the <parameter list> of the <procedure> in which the name is
declared. In this case all <extent>s must be written as asterisks. If the
<extent> of a parameter is not an aster isk, it must be constant, a
<cvi expression>.

If the keyword DIMfl SION is omitted , <dimension > must be the first
<attribute> in the <attr ibute set> .

3.6.11 Entry -

- -. An item declared with the attribute <entry> represents entry values.
Data of type entry and further entry attributes are specified in section 5.3.

4 3.6.12 External

Syntax:

<external> :: EXTERNAL

~ . name declared with the attribute <external> has external scope. The
name is known for the scope of the declar ation and in all <block>s which have
the same name declared with the <external> attr ibute.

3.6.13 Fixed

Syntax:

<fixed> ::= FIXED

A data item declared with the attribute <fixed> represents a fixed—po int
arithmetic value. The <precision> attribute is required for fixed—point data.
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A name declared with the <constant> attr ibute is a named constant.
Named constants cannot be assigned values dur ing program execution. The
<initial > attribute is required to assign a value to the named constant.

A named constant may be used in a <cvi expression> (section 4.3.2).

3.6.8 Controlled

Syntax :

<controlled> ::= CO1~TTROLLED

A name declared with the attribute <controlled> is a variable which has
storage allocated when an <allocate statement> that identifies the controlled
variable is executed. The storage for a controlled var iable is freed when a
<free statement> that identifies the controlled variable is executed .

Only one allocation can exist at any time. See the ALLOCATION
builtin—function for the ability to test whether an allocation exists.

4 3.6.9 Defined

c
• Syntax:

<defined attribute> ::= DEFINED <base reference>
<base reference> : :=  ( <base reference>

A var iable declared with the <defined attribute> is a var iable whose
generation of storage is identified by the <base reference>. Refer to
section 3.3.6 for a discussion of the use of defined variables.

3.6.10 Dimension

Syntax :

<dimension > :: [ DI~’iEflS ION
<extent> [ ,<ex tent> [ ,<extent>] 1

<extent> :: <expression> I *

3—13
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3.6.4 Builtin

Syntax:

<builtin> :: BUILTIN

A name declared with the attribute <builtin> is a builtin—function and
must match one of the function names given in section 4.7. This attribute
allows redeclaration within an inner procedure block of a name that has been
used as a program name in a containing block . The latter is possible since
builtin— f unction names are not reserved words.

3.6.5 Cardinal

- ? Syn tax :

<cardinal> ::= CARDINAL

A data item declared with the attribute <cardinal> represen ts a cardinal
arithmetic value . The <precision> or (range> attribute is required for
cardinal data.

3.6.6 Character

Syntax:

<character> ::= CHARACTER

A data item declared with the attribute <character> represents a

character—string value. The <length> attribute is required for
character—string data .

3.6.7 Constant

I
Syntax:

<constant> ::= ~~~STAI-.’I’

s 3—12 
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A data item declared with the attr ibute <al igned> is allocated storage
beginning on a boundary determined from the <bound ary>.

When <boundary> is BYTE , storage is allocated beginning on byte (8 bit)
boundaries. When <bounaa :y> is HALF~cOp~D , storage is allocated beginning on
ha lfword (l~ bit)  bounoar ies. .~iien <bounä~ry> is ~CFD , storage is allocated
beginning on word (32  bit) boundaries . When <boundary> is <cvi express ion> ,
the value of 2 raised to the value of <cvi expression> determines the bit
boundary for the beg inning of allocation. The <cv i expression> must have a
value greater than zero. An n—bit boundary occurs at bit positions which are
positive, integer multiples of n.

3.6.2 Automatic

Syntax :

<au tomatic> ::= AU~ONATIC

A name declared in a given <block> scope with the attribute <automatic>
is a var iable wh ich has storage allocated each time the given <block> is
entered . The storage for an automatic var iable is freed when the given
<block> is deactivated.

The <extent> expressions and <initial> attribute of an automatic
variable can contain <expression>s; the values are computed upon block
activation. A value is computable on block activation if it can be evaluated
without referencing any automatic , controlled , or defined var iable declared
in the <block>.

3.6.3 Bit

Syntax:

<bit> :: BIT

A data item declared with the attr ibu-e <bit> represents a bit—string
value. The <length> attribute is required for bit—str ing data.
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must be followed by a <declaration component> with a <level> greater than
one. If a (declaration component> has a level greater than one, it must be a
member of a structure.

A given <attribute> can occur only once in an (attribu te set>.

3.5.2.1 Declaration of Scalars

A scalar data item is declared by a <declaration component> with a
<declared name> that does not have a <dimension> attribute in its
<attribute set>, and that is not a main structure or a nested structure.

3.5.2.2 Declaration of Arrays

• . An array data item is declared by a <declaration component> with a
<declarea name> that includes a <dimension> attr ibute in its <attribute set> ,
and that is riot a main structure or a nested structure.

3.5.2.3 Declaration of Structures -

A structure data item is declared by a <declaration component> that does
not have a <dimension> attribute, and that has a <level> , and is followed by
a <declaration component> in the same <declare statement> with a <level>

4 greater than the current <declaration component>.

3.5.2.4 Declaration of Arrays of Structures

An array of structures data item is declared by a
<declaration component> that includes a <dimension> attribute in its
<attribute set> and is a main or nested structure .

3.6 The Data Attributes

The declara tion of a data item includes an <attribute set> to ~~ecify
properties of the item. The data attributes which may appear in an
(attribute set> of a <declare statement> are specified in this section.

3.6.1 Aligned —

Syntax:

(aligned> : : ALICNEI) ( (boundary>
<boundary> : : = BYTE I HALF\’~ORD I ~JRD

I <cv i express ion >
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All declarations of a name with the <external> attribute must have an
identical set of attr ibutes.

3.5.2 The Declare Statement

Syntax:

<declare statement> : := DECLARE <declaration component>
<declara tion component> 1...;

<declaration component> ::= [<level>] <declared name>
[<attr ibute set>)

<level> I
<factored name> [ , <factored name> J ...

• [<attr ibute set>]
<level > : := <decimal integer>
<factored name> ::= <declared name> [ <dimension>
<declared name> ::= <identifier>
<attribute set> ::= <attribute) I <attr ibute> ) . . .
<attribute> ::= <data type> I <storage class>

I <alignment> I <initial>
I <constant> I <dimension>
I <external> I <defined attribute>

<da ta type> ::= <arithmetic> I <string>
I <entry> I <file>
I <builtth>

<arithmetic> ::= <f loat> precision>
I { <cardinal> I <fixed> )

{ <precision> I <range>
<string> :: ( <bit> I <character> }

( <length> [ <varying > ]
I <varying> <length> I

<storage class> ::= <automa t ic> I <controlled>
I <static>

<alignment> : := <aligned> I <unaligned>
I <menory>

The syntax of all <a ttribute>s except entry and f ile is given in section
3.6 and the syntax of entry and file <attribute>s is given in sections 5 and
8.

Factoring may be appl ied to <declared name>s having <attribute set>s
which differ only in the <dimension> attribute.

The optional <leveL> is used when declar ing a structure or array of
structures . If a <declarat ion component> has a level of one , the
<declared name> is the name of a main structure. The <declarat ion component>
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3.4.2 Memory PropeI~ties

A machine dependent a t t r ibute  of data is <memory> , which spec if ies the
type of memory where the data item will be allocated . STARA1~ has twoseparatel y addresssed memory systems . The main memory address space is used
primarily for storage of scalar data, and small arrays or structures (or
those not referenced often). The multi—dimensional access (MDA) memory is
used primar ily for storage of arrays and structures. Many array operations
take place most efficiently on data stored in the MD~ memory.

3.4.3 Storage of Arrays

Arrays of data may be stored in the main memory or the STARAN ?dY~.
memory. The means of addressing the two memory types are distinct from each
other . Thus the organization of data in relation to the memory in which the
data is stored may effect perfor mance.

3.4.4 Connected Storage

Arrays are allocated in connected or unconnected storage. A connected
array is one in which all elements of the ar r ay are adjacent to one another
according to a particular means of referencing the array . An unconnected
array is one in which elements of the array are separated from one another by
other values.

An unconnected array exists as an array of structures or as a result of
cer tain references to portions of the array as descr ibed in section 4.2.

3.5 Declarations

Scalar , array , struct’ire, arra y of structures , entry and file data are
given names . The attributes associated with a name are specified by the
declaration of the name. All prog r am names must be declared; built in—function
names do not need to be declarec .

3.5.1 Scope of a Declaration

The scope of a declared name is the <block> in which the name is
declared and all contained <block>s in which the name is not redeclar ed .

A name can be declared only once in a given <block>. The name is known
only for the scope of the declaration unless the <external> attribute is
included in the declaration. A name declared with the <external> attribute is
known in all <block>s in which the same name is declared with the <external>
attribute and in all contained <block>s in which the name is not redeclared.
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Example:

declare XX (4, 4) ;
declare Y ( 4 )  defined ( XX [lsub, isub]);

The array Y is a four element array whose elements constitute the diagonal of
the array XX . A <reference> to Y E K ]  is equivalen t to a <reference> to
XX [K , K).

An unsubscr ipted <reference> to an i—sub defined array is equivalent to
a cross—section <reference> in which all <sutscript>s are asterisks. In the
example above, a <reference> to Y is equivalent to a <reference> to y[*j
which is equivalent to a (reference> to the array formed by the elements
XX[l, 1), XX [2, 2 ) ,  and XX [3, 3). In this example, Y is always in
unconnected storage.

The data type, al ignment <attr ibute>s , and string <length> of the
defined array must be identical to the corresponding <attr ibute>s of the base
array. If the defined variable is a structure, the structuring of the
defined var iable and the base var iable must be identical , and the data types ,
alignment <attribute>s, and extents of all members of the def ined var iable
must be identical to those of its corresponding member in the base struc ture .

4 
3.4 Data Storage

3.4.1 Storage Classes

The storage class determines the t imes at which data items are allocated
or freed and thus it determines the lifetime for values of the data items.
The mutually exclusive storage class attributes are <automatic>,
<controlled > , and <static>. Allocation occurs upon <block> entry, execution
of the ALLOCATE statement, and at the beginning of <prog r am> execution
respectively. The freeing of storage occurs at <block> exit , execution of
the corresponding FREE statement , and at the end of <pr ogram> execution
respectively.

A variable is a member of the storage class corresponding to its
declared storage class attr ibu te . Storage for a component of a structure is
allocated or freed when its containing main structure is allocated or freed.
The storage class attributes are defined further in section 3.6.
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4.4.1.2.2 Infix Operations

If both operands are floating—point values, the result is a
floatino—peint value with precision equal to the greater of the precision s of
the two operands.

If the operands are fixed—point values, the result type may be either
fixed—point or floating—point and depends on both the operator and the
converted oper ands as described by the fol lowing :

Notations:

Let N be 63 (maximur~ floating—point precision , implementation defined,
radix is binary) .

Let (p,cj) be the precision of the first  oper and , and
(r ,s) be the precision of the second operand .

In principle the precision and scale are the minimum values that - will
contain the actual value without loss of significant bits.

Addition or subtraction operator (+ — ) .

The result is a fixed—point value whose precision is:

(min (N, max (p—q , r—s) + max (q,s) + 1),
max (q, s ) )

The value of the result is the algebraic sum or the difference of the
two oper ands .

Multiplication operator (*)~

The result is a fixed—point value whose precision is:

(min (N , p+r+l) , q+s)

The value of the result is the algebraic product of the two operands .

Division operator (/) .

The result is a fixed—point value whose precision is given by:

(N , N—p-fq—s)

The value of the result is the algebraic quotient of the first operand
divided by the secona. If the quotient exceeds the precision of the
result , the least significant digits of the quotient are truncated to
form the result. Note that the result always has the maximum pr ecision
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Data References and Expr essions

The precision of the two operands may di f fe r  without requiring any
conversion. If a conversion built— in function is used to overcome a
difference in type, the precision of the converted operand is given by
the rules in section 4.5.

Exa~rQle:

declare A character (S) , B fixed (31 , 0 ) ;

= fixed (A) + B;

In this example, A is conver ted to a fixed—point quantity of
precision(16, 0) ;  large enough to hold any 5 digit decimal integer . The
target type for the addition is fixed —point. The operand B is not conver ted
because it already has the target attribute <fixed>.

4.4.1.2 Arithmetic Operator Results 
-

The operands are converted (possibly using built—in functions) and
evaluated , then the operation is performed . The result is an ar ithmetic
value whose type and precision are determined by the converted operands and
the operator as descr ibed in the following sections .

The precision rules of “fixed—point” operations are such that no high
order digits (bits) of the true arithmetic result are lost. Unless the
operation is division or the result precision has reached the limits of the
wach 4 ne—sys tern (N) , no low order digits of the true arithmetic result are
lost. In the latter case, the precision rules given below indicate exactly
when low order digits are lost.

A floating—point result of precis ion (p) , always binary , contains the
most significant (n ) bits of the true ar ithmetic result , where n is
implementation defined, is greater than or equal to p, and is a maximum of
71.

~ben the final result of the evaluation of an <expression> is assigned
to a var iable or to a generation of storage to be passed (by value ) as an
argument, as many as n significant digits are stored if the target is
unpacked (al igned ) and of significant precision, but p significant digits are
stored if the target is packed (unaligned). In the truncation case , excess
low order digits are truncated .

4.4.1.2.1 Prefix Operations

The two prefix operators, plus and minus , produce a result having the
type and precision of the single operand. The value of the result of a plus
operator is the value of the operand. The value of the result of a minus
operator is the algebraic negative of the operand value .

4—19
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pr ogram , it can be referenced in any context that require s constant—valuedintegers.

Syntax:

<cvi expression> ::= <express ion>

A <cv i expression> can be a na-ne declared with only the <range>attribute; no <data type> is needed. In such a declaration it thenrepresents the set of integer values defined with the name. Alternatively,the <cvi expression> can be any expression which is made up of Onlyconstant—valued integer oeçerands .

A (cv i express ion> can be referenced in any context that reQu iresconstant—valued integers.

4.4 Operators

4 . 4 . 1 Arithmetic Operators

The prefix ar ithmetic operators are:
+ plus
— minus

The infix arithmetic operators are :
+ adu
— subtract
* multiply
/  divide
** exp enentj ation

4.4.1.1 Arithmetic Operands Operator

The operands for arithmetic operators must both be arithmetic. Theconversion rule s are given in section 4.5 , and the target attribute set forthe conversions is:

1. If one ope r and has the attribute <fixed> and the other is <cardin ~i1> ,the latter operand is converted to <fixed> precision (r ,e) wher e- r isthe m xjrr urn of the two precisions.

2. In all other cases , the operands must be explicitly conver ted to a
- 

- cornon arithmetic type using a built—in function .
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Order of Evaluation.

4.3.1 General Expressions

Syntax:

<expression> ::= <expression one>
I < e xpre ssi o n> I (expression one>

<expression one> :: <expression two>
I <expression one> & <expression two>

<expression two> ::= <expression three>
I <expression three> <relational> <expression three>

<relational> ::= = = ( - < I <= I > I >=

<expression three> ::= <expression four>
I <expression three> H <expression four>

<expression four> ::= <expression five>
I <expression four> { + — I <expression five>

<expression five> ::= <expression six>
I <expression five> { * I / I <expression six>

<expression six> ::= <basic expression>
I <simple expression>
I <parenthesized expression> <expression seven>

<expression seven> ::= 1~ <bas ic expression >
I <parenthesized expression>

** <expression six>

<simple expression> ::= {+ I — I “ 1 <expression six>

<parenthesized expression> ::= ( <expression>

<basic expression> ::= <reference>
I <literal constant> I <i—sub>

4.3.2 Constant—valued Expressions

A constant—valued expression is any expression which involves only
constant integer operands and can be evaluated before any execution of the
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the paramete: is associated with an argument, and holds only for the time the
pa r ameter remains associated with the argument.

If a parameter is declared with (onl y) constant extents , the
corresponding argument must have identical constant extents to match the
parameter.

In determining whether an argument is to be passed by—value or
by—reference, an asterisk extent is considered to N~~~~~ II any extent of the
argument (see 4.2.8.2). A dimensioned parameter that could correspond to an
array arguxrent in unconnected storage must be declared with asterisk bounds.

4.2.9 Function Reference Reducibility

An entry .s a reducible function under the following circumstances:

~ Each invocation of an entry invokes only
reducible functions.

~ Each invocation of an entry returns a value
that depends only on the values of the
arguments passed to that invocation.

~ Each invocation of an entry produces no
side—effects.

Any entry that is not reducible is irreducible. Note that a side—effect is
any change in the value of any item outs ide of the invoked entry or any of
its dynamic descendents.

The order of evaluation of <reference>s to irreducible functions is not
defined during the evaluation of <expr ession>s , but all the function
<reference>s are evaluated. A <reference> to a reducible function may be
evalua ted before the statement in which it is wri tten is executed, but a
<reference> to an irreducible entry is always evaluated during execution of
the statement in which it is written.

- 

- 
See section 4.1 for order ot evaluation in <expression>s and section 5.3

for the aef in ition of the <reducible attribute> and <irreducible attribute>.

4.3 Formal Syntax of Expressions

This section defines the expressions , and the order of evaluation of
operators contained in <expression>s (thus the precedence). The evaluation
of oper ands in <basic expression>s may differ from the order for operations
as expressed by these syntax rules according to the rules of section 4. 1.4,

4—16
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4.2.8.2 Matching Attributes for By—reference Passing

In procedure invocations, the attributes of a (reference> written as an
argument must match those of the corresponding parameter in order to achieve
passing the argument by—reference. If the attributes do not match, the
arguments are either passed by—value or the program is in error.

The following rules also apply :

If a parameter is an aggregate (struc ture or array ), it matches an
aggregate argument with elements that match the corresponding elements
of the parameter. It also matches a scalar argument if the latter can
be proffoted as specified in section 4.6.

If a parameter is a scalar , the <fixed> , <float> , <bit> ,
<character> , <entry> , <file>, <varying>, <aligned> , ‘zunaligned> , and
<me rory> attributes mus t match.

If a parameter is ari thmetic , the <precision> attribute of t~e
parameter r.ust be * or nave the same value as the argument <precision>.
Implicit conversion is allowed between types <fixed> and <cardinal> as
defined in section 4.5.

If a parameter is an entry variable, it matches an argument which
is an expression with type <entry> . The <parameter description list>
is not matched.

If the parameter is an array , the <dimension > attr ibute of the
parameter must have all *_extents or have the same values as the array
argument. The array parameter can match a scalar argument if the latter
can be promoted as specifieã in section 4.6. An array in unconnected
storage (cross—section or “

&
“ subscript reference) cannot be passed as

— an argument to an array parameter declared with constant extents.

• 4.2.8.3 Promotion and Conversion of Arguments

As specified in the previous section, the evaluation of an argument to
be passed by—value may include promotion and/or conversion. If the only
def ined promo tions or convers ions will not allow the argument to confor m to
the parameter , then the program is inval id and in error. Refer to sections
4.5 and 4.6 for definition of conversions and promotions respectively.

4.2.8.4 Extents of Parameters

An array or str in g parameter may be declared with either
<cvi expression> (constant) or asterisk extents . For a parameter declared
with asterisk extents , the unspecified extents are given the values of the
corresponding argument extents ; this assignment of exten ts occurs each t ime

4—15
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4.2.7 Built—in Function References

In addition to function references to user written procedures, a
function reference can invoke one of the set of built—in functions. Tnis set
is an intr insic p ar t  of the language and provides operations that either
cannot be expressed or are not usually expressed as infix or prefix
operations. The identifiers used for the built—in function names are not
reserved. Any of the identifiers can be declared for other items and, if
necessary, recieclared as built—in functions in an inner block by use of the
<builtin> attribute. A built—in function name does not have an entry—value
and must not be written in a context that requires an entry value. The
cosplete list of functions and their specification is in section 4.7.

4.2.8 Parameters and Arguments

As shown in the syntax, an argument is an <expression> in the
<argument list> of a <call statement> or <function reference>. A parameter
is a name declared in the procedure and used by the latter to reference an
argument. The correspondance between an argument and a parameter is by
position in the respective lists and exists until the block activation that
established the correspondance is ended by a return .

The scope of a parameter is internal to the <block> in which the name
appears as a parameter, and the generation of stor age associated with a
parameter is supplied by its corresponding argument. A parameter cannot have
an <initial > attr ibute .

A reference to a parameter is in error if there is no argument
associated with the parameter. This er roneous reference could only occur in
a <procedure> containing one or more <routine staternent>s .

4. 2.6. 1 Argument Passing By—value or By—reference

Arguments may be passed in two manners , by—value and by—reference. For
- - passing by—value , the argument is evaluated and assigned to a new generation

of storage in the invoking <procedure>. The new generation of storage is
then associated with the parameter. For passing by—reference, the arguemnt ’s
generation of storage is associated with the parameter; the argument and
parameter share one generation of storage. If an argument is passed
by—value , any assignilent of values to the corresponding parameter do not
access or change the value of the argument.

In order to be passed by—reference, an argument must be both readable
and writeable; thus a <reference> enclosed in par entheses as a

- 
- sub—expression , a <literal constant> , or a <reference> to a var iable with the

attr ibute <constant> is always passed by—value.

4—14
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Data References and Expr essions

~ The reference is a complete qualification of
only one declaration of the name.

The reference in either case is to the declared name . In any other case the
reference is ambiguous and in error .

The form of any <subscrpit> lists or <ar g ument list>s does not affect
the resolution of <reference>s .

4.2.6 Function Reference

The syntax of a <function reference> differs from that of a
<subscr ipted reference> .

Syntax:

<fun ction reference> ::= <entry reference>
[ <argument list> I

<entry reference> ::= <reference>
<argument list> : := ( [ <arguments > I

<argume nts> ::~ <express ion> [, <expression> 1 ...
4 The <entry reference> is required to yield a scalar entry val ue . A

- - <function reference> is distinguished from a <reference> to an entry value by
the presence of an <argument list>. The <argument list> is must be empty if
the en try has no

parameters. The evaluation of a <function reference> results in the
invocation of an entry value. The value of the <function reference> is the
value returned by the invoked entry .

Examples:

declare F N O AI~ S entry() returns(fixed(15, 0));

declare Fl_AI~ entry (fixed(l5 , 0)) returns (bit(l));

A <reference> to FNO ARGS is not a <function reference>, but is a
<reference> to the entry of F_t~_AEGS. A <function reference> to the value

- returned by the invocation of F_NO_AI~S would be written as F_NO_ARC~~O .

A <reference> to the entry value of Fl_AE~ is written as Fl ARC and a
<function reference> to Fl_ARC is written as F1 ARC(K).

4—13
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Example:

declare 1 LIST(3) ,
2 NEX T ...
2 DA TA (4);

The items LIST and NEXT are one-dimensional arrays and a

<subscripted reference> must contain one <subscript>. A
<subscripted reference> to DATA or LIST.DATA must have two <subscript>s since
it has a dimension of two.

Cross—sections of these arrays may be referenced as follows:

• Example:

declare 1 LIST(3),
2 NEXT cardinal (16)
2 DATA(4) bit(8);

declare 1 TAE ,
2 ELEMENTS (5) bit (8) ;

The following are all valid cross—section <reference>s:

LIsT I KJ .DATAI*i LIST[*J .DATA(*] LIST[*].NEXT
LIST [*) TAB.ELEME1~LS[*]

The following is an invalid reference:

LIST.NEXT I

• 4.2.5 Qualified Reference Resolution

A qualified reference to a name applies to the valid declaration of the
structure identifier declared in the innermost block containing the

P reference . A val id declaration is one of a structure <meitber> in which some
or all of the containing structures have the same names and (hierarchical)
order as the <containing reference>s of the subject reference.

Within this block of declaration , the reference is una~thiguous if either
of the following holds:

~ The reference is a valid qualification for
exactly one declaration of the name.

~1
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data and to section 3.6 for a description of structure declarations.

Syntax:

<qualified reference> : := <containing reference>
<contain ing reference> J ...

<member reference>
<containing reference> ::=<simple reference>

I <subscripted reference>
<member reference> ::= <simple reference>

I <subscripted reference>
I <func tion reference>

Examples:

K.L.M

R.S.T[2, M]

~~DE • ELEMENT

-) In a structure reference, the - 

rightmost <reference> is the
<meither reference> and it identifies the innermost item being referenced.
It is contained within the structure identified by the immediately preceding
<containing reference> , which in turn is contained within the structure
identified by the isinediately preceding <containing reference>, etc.

The structure reference is fully qualified if it has a
<containing reference> corresponding to each of its containing structures.
In order to be in a fully qualified <reference> , a name declared at level n
in a substructure must have n—i <containing reference>s. A

• <simple reference> or simple <subscripted reference> to a name declared by a
level—one declaration is considered to be a fully qualified <reference> to
that name .

A fully qualified <reference> is never ambiguous. A rightmost
<reference> is partially qualified if it has fewer <containing reference>s
than it has containing structures; a partially qualified reference can be
ambiguous.

The number of <subscr ipt>s in a reference must always be the same as the
declared dimension of the referenced name including all dimensions inherited
from containing structure levels.

4—li
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<identifier> E & <r-xpression> I

where <expression > is the value obtained at the time the IFARPAY was
executed . In the context of IFARRAY . . .ELSE. . .& it is equivalent to

<identifier> [ (&<expression>))

4.2.3.3 Selection by Subscr ipt Range

Form: (first element> : <last element>

<first element> ::= <expression>
<last eleme it) ::= <express ion>

The elements selected are those in the given dimension with indices in
the range of the value of the expression <first element> through the value of
the expression (last element>.

The resultant reference is an unconnected array reference if any
subscript for a higher numbered d imension (a subcr ipt toward the left) is a
<selector> . It is a connected arra y reference if each and every subscr ipt,
if any , for higher numbered dimensions is an expression .

Example:

declare (A(20), B(20), C(22)) cardinal(l6);

ifarray 61*) < A [~) then
B [& J  = A [ & )  + C[3 : dim(C) );

endif ;

For each i—th element of B which is less than the correspond ing (i—th)
element of A , assign the sum of A ( i ]  and C[i+2J.

4.2.4 Structure Qualification

A structure is a hierarch ical collection of scalar var iables, arrays,
and structures . These do not need to be of the same data type nor have the
same attr ibutes . Because of the hierarchy, the name of a structure member
(item) can have a scope that overlaps another declaration of the name.

Structure qualification provides the facility to resolve ambiguity of
<reference>s to these names . In structural qualification, the <reference) is
qualified by <containing reference>s to one or more of its declar ed
containing structures. Refer to section 3 3  for a discussion of structure

4—10
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There are 3 forms of array selection qualification:

1. & <selection qualifier>
2. &
3. <first element> : <last element>

where each of these is an <expression>

All three are means of selecting a por t ion of an array in the d imension
corresponding to the position in which the <subscript> appears in the
<subscripted reference> . The portion of the array being selected is an
unconnected cross—section reference. The number of dimensions of the
reference is not reduced by these subscr ipt forms .

4.2.3.1 Array Slice Selection

Form: & <selection qualifier>

The <selection qualifier> is a <reference> and must be an array of
bit—str ing values (usually “bit(i)” ). If the extent of the
<selection qualifier> vector is not equal to the corresponding dimension of
the array reference , a copy of its value is extended to the extent of the
latter dimension value .

A list of values for the subscript is developed as follows:

If the bit string in element i of the bit—string array is “true ” (not
all zero bits), the corresponding subscript has the value i added to the
list. If the bit string in element i of the bit—string array is “false ”
(all zero bits),  the subscript value i is not used in forming the list.

The resulting list of subscript values is used to seiect array elements
from the array ; the number in a given dimension is equal to the nun ber of
“true ” values in the (selection qualifier> bit—striny array.

If the array qual ified by this form has only one dimension, then the
reference makes a vector referred to as a selection by bit—vector .

4.2.3.2 Special Selection in IFABRAY Context

Form: &

This <selector > form is allowed in the context of an <ifarray statement>
to select array elements based on the value of the <expression> in the
innermost containing <ifarray clause>. The reference

<identifier> I & IS
in the context of IFARRAY...ThEN.. .& is equivalent in meaning to

4—9
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asterisk. As for all array references , the number of subscr ipts in the list
must be equal to the dimension declared with the array name. if the 3—tb
subscript is an asterisk , the cross—section of the array includes all
elements covered by vary ing the j-th subscript in the interval closed by its
declar ed bounds. The dimensionality of the cross—section reference is equal
to the number of asterisks, k, in the subscript list.

If all (subscr ipt>s are asterisks, then this reference is equival en t to
the name written without any subscripts; it is a reference to the entire
array .

A cross—section may be used anywhere that a reference to an array of
dimension k is required. In this document the word “array ” should be
interpreted to include array values of cross—section <reference>s.

- A reference to a cross—section of an array may be a reference to
• elements which are not in contiguous storage ; the elements are separated by

data items that are not part of the cross—section. Such unconnected arrays
cannot be passed by—reference as arguments to array parameters unless the
parameters have a declaration with an asterisk dimensions. In all other
contexts, a cross—section <reference> can be used wherever an array
<reference> could be. See section 3.4.3 for the discussion of connected
arrays.

4
Example:

declare I cardinal(l6)
declare (K(6, 8), L(8, 4), M(8) ) bit(l6)

K E I , *1 L[* , 2) + M [ *) ;

The f irs t  assignment statement conputes a vector of 8 values by adding
the values of the second column of L to the values of M and then
assigning the sums to the I—th row of K. Note that a (reference> to
ML~1 is equivalent to a <reference> to M.

4.2.3 Selection Qualification

A <subscripted reference> containing one or more <selection qualifier>s
as subscripts is a cross—section reference to the array. It is a reference
to an unconnected array of elements selected by the one bits in the
bit—string <selection qualifier> from the array specified by the <reference>.

4— 8
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Any <reference> conta ined in a declaration of a name X is resolved in
the <block> that iimiediately contains the declaration of X, and is evaluated
when X is referenced or allocated. The <reference> is evaluated as if it
were referenced in the <block> that immediately conta ins the <reference) to
X , or in the (block> that caused the allocation of X.

4.2.1 Simple Reference

Syntax:

<simple reference> ::= <identifier>

The reference is to any <variable>; it may be a scalar, an array , or a —

structure (including array of structures). A reference to a data item other
than a scalar is known as an aggregate value if the context requires its
value.

4.2.2 Array Reference

Syntax:

<subscripted reference>
<array reference> j  <subscript> I

I <array ref erence>
~~. 

<subscr ipt> { , <subscript> }... j

<array reference> : := <simple reference>

<subscript> ::= <expression > I *

I <selector> —

<selector> ::= & I & <selection qual if ier>
I <first  element> : <las t element>

<selection qualifier> ::= <reference>

The number of <subscript> expressions must be the same as the number of
dimensions in the <dimension> attr ibute of the declaration of the name (see
3.6). The <express ion>s used as a <subscr ipt> are scalar values used as type
<fixed—point> or <cardinal> with integer values . Refer to section 3.3 for a
discussion of array data .

Cross—sections are an extension of the (subscr ipted reference>. A
cross—section of an array, when referenced by the array name followed by a
list of subscr ipts , is denoted when at least one of the subscripts is an

4—7
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Syntax : - -

(reference> ::= <simple reference>
I <subscripted reference>
I <selected reference>
I <qualified reference>
I <function reference>

The semantics of a (reference > depends upon <reference> , the
(attr ibu te>s of the declared name referred to, and upon the context and for m
in which the <reference> occurs.

Evaluation of a <reference> that identifies a name without the
<constant> attribute either denotes a generation of storage of the var iable ,
the curren t value stored in the generation of storage of the variable, or an
identification of the variable’s declaration.

A (reference> yields a value unless it occurs in one of the two for ms of
contexts that follow :

In these contexts , a <reference> to a variable identifies only the
declaration of the variable:

~ 
<allocate reference> for an <allocate statement>.

~ argument to the built—in function “ALL0CP~TE ” .

In several contexts , the <reference> produces the complete description
of its generation of storage , which must be allocated , but not the value:

~ assignment statement <target>.

g <index> in an <iterative loop> heading (rX~—statement).

• free statement <reference>.
j . 9

• argument, passed by—reference, in a
<call statement> or <function reference>.

• pseudo—variable <reference>.

• <reference> in an <in option> , <into option> ,
<from option > , or <keyto option>.

In all other contexts , a <reference > accesses the value of the var iable.
Both the generation of storage must be allocated , and a ~,alue must have been
previously assigned; otherwise the program is in error . The components of a
<reference> are evaluated in an unspecified order , and any program that
depends on a certain order is in error .
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cannot return.

Any (on unit> signalled during <expression > evaluation cannot access
variables that are assigned values by the interrupted expression or
containing statement. Similarl y, the <On unit> cannot assign new values to
variables used by the interrupted statement with the expectation that the new
value will be used upon normal return from the <on unit> .

Example:

on zerodivide

- - endon;

D 0;
X l/D + l/D;

In this example:

1. the value of X is not defined upon entry to the <On unit> .

2. if the <on unit> does a normal return the result of the program
is undefined and in error , regardless of whether or not the <on unit>
assigned a new value to C.

3. the number of times the zerodivide condition is signaled is not
defined , but it is signalled at least once.

4.2 References

t References provide the means of access to all names declared in a
<pr ogram unit> . The value and/or storage of a var iable~ the value of a named
constant, or the value returned by a function are all represented in the text
of a <program unit> by a <reference> to a declared name. Refer to Section
3.5 for a discussion of declarations and the scope of a declaration.

A <reference> must be associated with a single declaration . A
<reference> is resolved by determining the declaration to which it refers;

- resolution is described in section 4.2.5. A <reference> must be associated
with a single declaration. A <reference> is evaluated by locating the
generation of storage or value represented by the declared name. A
<re ference> is resolved by the compiler and is evaluated during progra m
execution.
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The <expression> is the quantity to be converted to a character—string of
minL-ru1r. length to represent the characte r equivalent value of the argumert.

4.7.1.15 VERIFY

The VERIFY built—in function will examine two given strings to verify
that each character in the first string is present in the second string.

Format:

VEPJFY ( <express ion> , <express ion>

Both <express ion>s must be either of type character—string , or of type
bit—string . The first <expression> is the source strin-.~ and is corrpared
against the second <expression> to see if each element of the first exists in
the second. If each character of the source expression exists in the second ,
this function returns a value of zero. If an examined character in the
source expression is not present , the index of that characte r is returned.

4.7.2 Arithmetic Built—in Functions

4.7.2.1 ABS

The AE~ built—in function will determine the absolute value of a given
quantity and return it to the point of reference.

Format:

AES( <expression>

The <expression> argument must be arithmetic , and the value returned by 1-~~is the absolute value of <expression>. If <expression> is an arr ay or
structure , then the absolute value of each member is returned .

4.7.2.2 ADD

The ADD built—in function permits one to control the precision of an
addition operation.

Format:

ADD( <expression> , <expression> , <result precision>
[ ,  <result scale>

The first two <expression> terms are arithmetic in type and are added
together according to the precision and scale specified by the last two
terms . The (result precision> specifies the precision , ar~ the
<result scale> , when present , specifies the scale. Both (result precision >
arid <result scale> are defined to be <cvi expression>s. If the type of the
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Format:

~C~i( <expression>

tbc ar ~ ument <expression> is an array of bit—strings. If the elements are
not bit—str ings, they are converted to bit—str ings. The scalar value
returned by this function is a bit—str ing of length one and whose bit value
is dete rmined by the f oll~~ ing rule : If any bit of any element in
<expression> is E ’l’ , then the resul t is B’ l ’ ; otherwise, the result is E’C’.

4.7.1 .12 STRING

This built—in function will concatenate all of the elements of an
aggregate var iable into a single string element.

Format:

STRING ( <reference>

The <reference> is that of the aggregate var iable whose elements are to be
converted to their coiTiron string type (character, unless all of the elements
of <refercnce> are of type bit—string).

4.7.1.13 SIJBSTF

The SUBSTR bui l t—in function provides access to part of a specif ied
string .

Format:

SIJESTR ( <expression> , <expression> [, <expression> I

The f i r s t  <expression> term represents the string from which the substring
will be extracted. The second occurrence of <expression> is the index of the
starting point in <expression> of the desired substring. The third
occurrence of <expression> , if present, specifies the length (nunter of bits
or characters) of the desired sub string . If the third expression is net
presen t, the substring extends through the end of the string <expression>.

4.7.1.14 VARCHP.R

The VARCIIAB built—in function will convert a given value to a varying
character—string.

Format:

VAP CHAP ( <ex press ion>
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The evaluation of <expression> specifies the length of the string to be
formed .

4.7.1.8 INDEX

The I~.DEX built—in function determines if a specified bit—string or
character—str ing occurs within a specific str ing and, if so, its position
within the string .

For~nat:

INDEX ( (expression> , <expression>

The evaluation of both <express ion>s must be of either type bit—str ing or of
type character—string . The f i r s t  <expression> is the str ing to be searches ,
and the second (expression> is the string configuration to be searched for .
The resultant value is zero or the position of the beg inning of the first
occur rance of the second string <express ion> .

4.7.1.9 LU-JGTH

4 
The LCWGTh built—in function finds the length of a given string value .

- 
- 

The value of the function is the number of bits in a bit—string or the number
of characters in a character—string.

Format:

LENGTri ( <expression >

The <expression> represents the string whose length is determined.

4.7.1.10 LCA’.

The L1J~. built—in function for ms a character—string of a particular
length consisting of the lcMest character in the collating sequence.

Format:

Li).( <expression>

The <expression> tern~ specifies the length of the string to be formed .

4.7.1.11 SORE

The SO~1E built—in function tests the bits of a given bit—strin g array
and returns the result, in the form of an element bit—string , to the point of
invocation. The element bit—str ing indicates whether or not at least one of
the bits of the given array elements is set to E’l’ .
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Format:

COLLATE

The value returned by this function is a character—string of length 256. Thecharacters are the 256 characters of the 8—bit ASCII code in the standar dcollating sequence order .

4.7 .1.5 COPY

The COPY built—in function will form a string consisting of a specifiednumber of repetitions of a given string.

Format:

COPY ( <expression>, <expr ession>

The evaluation of the first <expression> is of type string, arid is the basisfrom which the new string will be formed . The second <expression> specifiesthe number of repetitions desired. The length of the result is the length ofthe first <expression> string tines the value of the second <expression>.
4.7.1.6 EVERY

The EVERY built—in function tests all bits of a given bit—string arrayand returns the result , in the form of an element b it— str inc~, to the point ofinvocation . The elemen t bit—string indicates whether 0’ not the bits ofgiven array elements are all ones.

Forirat:

EVERY ( <expression>

The argument <expression) is an array of bit—str ings . If the elements arenot bit strings , they are converted to bit—strings. The scalar valuereturned by this function is a bit—string of length one whose bit value isdetermined by the following rule: If the bits of all of the elements in<expression> are B ’l’ , then the result is 13’l’ ; otherwise , the result isB ’ l’ .

4 .7.1.7 HIGH

The HIGH built—in function will form a character string of a givenlength from the highest character in the collating sequence.

Format:

HIGH( <expression>
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The FIXED <expression> value is converted to decimal radix
representation. The precision of the <expression> is divided by 3.32 and the
smallest integer greater than or equal to the quotient is obtained. The
latter is the der ived length and is used as the numbe r of dec im al digi ts  for
the converted value . The der ived length is then increased by two to allo~.-for sign and a decimal point.

(1) If the length of the source (express ion> is equal to the specified
<result leng th> value , or the (result length> term is omitted , then the
result is the converted value of <expression>.

• (2) If the length of the source (express ion> is less than the specified
<result length> value , the result is padded on the right with blanks to the
specified length.

(3) If the length of the source <expression> is greater than the
specified <result length> val ue , the STRINGSI2E condition is raised. For a
normal return , the result is truncated on the right to the specified length.

If the source is FLOAT:

The FLOAT <expression> value is converted to decimal scientific notation
according to the definition of a <floating—point constant>. The precis ion of
the <expr ession> is divided by 3.32 and the smallest integer greate r than or
equal to the quotient is obtained. The latter is used as the number of
deciir.al digits to represent the mantissa portion of the number ; additional
characters are used as specified for a <floating—point constant>. The
exponent of the latter will Contain two digits.

(1) If the length of the source <expression> is equal to the specifieã
<result length> value, or the <result length> term is omitted , then the
result is the converted value of <expression>.

(2) If the length of the source <expression> is less than the specified
<result length> value, the result is padded on the right with blanks to the
specified length.

(3) If the length of the source <expression> is greater than the
specified (result length> value , the STRIt-~GSIZE condition is raised. For a
normal return , the result is truncated on the right to the specified length.

4.7.1.4 COLUtT~

The COLLATE built—in function returns the full ASCII character set j r
collating sequence order .
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(2) If tne length of the source <expression> is less than the specified
<result length> value , then (expression> is padded on the right with blanks
to the specified length.

(3) If the length of the source <expression> is greater than the
specified <result length> value , the STRI:~GSIZE condition is raised. For a
normal return , <expression> is truncated on the r ight  to the specified
length.

If the source is BIT :

- (1) If the source <expression> is null , the result is null.

(2) If the precision of the source <expression> is equal to the
specified <result length> value , or if the <result length> term is omitted,
then the result is produced containing 0 and 1 characters in the same pattern
as the zero and one bits of the source <expression> value.

(3) If the precision of the source <expression> is less than the
specified <result length> value, then <expression> is padded on the right
with blanks to the specified length.

(4) Ii~ the precision of the source <expression> is greater than the
specified (result length> value, the STRIL~GSIZE condition is raised. For a
normal return , <expression> will be truncated on the right to the specified
length.

If the source is CARDI~ AL:

The CAPDL~AL <expression> value is converted to dec imal radix
representation . The precision of the <expression> is divided by 3.32 and the
smallest integer greater than or equal to the quotient is obtained . The
latter is usea as the length in terms of the nuirnber of decimal digits for the
converted value.

(1) If the length of the source <expression> is equal to the specified
<result length> value, or the (result length> term is omitted, then the
result is the converted value of (expression> .

(2) If the length of the source <expression> is less than the specified
<result length> value, the result is padded on the right with blanks to the

— 

- 
specified length.

(3) If the length of the source <expression> is greater than the
- - specified <result length> value , the STRINGSIZE condition is raised. For a

norma l return , the result is truncated on the r ight  to the specified length.

- 
- -: If the source is FIXED :
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(3) If the precision of the source <expression> is greater than the
specified <result length> value, raise the STRINGSIZE condition. For a
n--:mal re turn , (expression> is converted as in case (1) and is truncated on
the right to the specified length.

4.7.1.2 BOOL

The BOOL built—in function will produce a bit—string whose bit
representation is the result of a given Boolean operation on two given
bit—strings.

Format:

B~~ L( <expression> , <expression> , (expression>

The evaluation of the three <expression>s must be of type bit—str ing. The
first and second <expression>s are combined accordin g to the Boolean
operation specified by the third <expression>. The th i rd  <expression> term is
a scalar bit—strin~ of length four (4), selecting one of the sixteen
functions. The first two <exprescion>s may be arrays or structures. If so,
they obey the rules governing conformance and pr omotion (4.6) and the BOCL
function is performed upon each corresponding pair of elements .

4.7.1.3 CHARACTCF~

The CHARACTEF built—in function converts a given value to a
character—string. This function allows the specification of the length of
the character—string result.

Format:

CHARACTER( <express ion> [, <result length>

The <expression > term is the quanitity to be converted to a character—string.
The <resul t leng th> , when specified, is a cvi expression> or variable
<expression> denoting the lenqth of the character—string result. If
<result length> is not constant, the resultant character string has the

I - attribute VARYING. If it is not present, the length is determined by the
conversion rules according to the attributes of the first <expression>.

The rules for conversion to CHARACTEFS depend on the type of the source
data. The rules follow:

If the source is CHARACTE R:

(1) If the length of the source <expression> is eoual to the specified
<result length> value, or if the <result length> terrr is omitted, then the
result is the value of the source <expr ession> .

4—32

~~~~~~~~ ~~~~~ ~~~~~~~~~



r ---- - -- -

~~

- - ----—

~~~~~~~~~

Data References and Expressions

zeroes to the specified length.

(4) If the length of the source <expression> is greater than the
specified <result length> value , raise the STRIN GSIZE condition. For a
normal return , <exçress ion will  be truncate d on the ri~ r.t to the specified
l~ r~~th .

If the source is CHARACTER :

( 1) If the source <expression> is the null  s tr ing , the result is null.

(2) If the source <expression> contains only C or 1 characters and its
length is equal to the specified <result length> value , then the conver ted
result is obtained as follows : The bit s tr ing result  is produce d containing
the sane pattern of zero and one bits as there are C and 1 ch aracters in the
source (expression> .

(3) If <expression> contains only C or 1 characters and its length is
less than the specified length , then the result produced as in case (2 ) is
padded on the r ight with zeroes to the specified length.

(4) If (expression> contains only C or 1 characters , and its length is
greater than the specified <result length> value , then the result produced as
in case (2) is truncated on the r ight to the specified length.

4 (5) Else, raise the C~~VERSI~~ condition for a character which is
neither a C or 1.

If the source is FIXED :

(1) The conversion is equivalent to converting the source <expression>
to CARDL~AL and then to BIT.

If the source is FLOAT: —

(1) The conversion is equivalent to converting the source <expression>
to FIXED, then to CARDINAL, and f ina l ly  to EIT .

If the source is CARDINAL:

(1) If the precision of the source <expression> matches the specified
<result length> value , or the <result lengt .~ > is omitted, then the result is
obtained as follows : The binary values of the cardinal’ s internal
representation are used as the bits of the resultant  bit string .

(21 If the precision of the source <expression> is less than the• specified <result length) value , then the conver ted result obtained as in
case (1) is padded on the right with zeroes to the specified length.
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COS LDG2 SIN SQRT
TAX~

4. Array Built—in Functions.

SELECT SiJ~

5. Miscellaneous Built—in Functions.

ALLOCATION

The asterisk (*) notation on certain built—in functions denotes those
built—in functions that are essentially conversion functions.

• 4.7.1 String Built—in Functions

The string built—in functions provide the user with the ability to
manipulate string values in a wide var iety of ways.

4.7.1.1 BIT

The BIT buil t—in function allows one to control the result of a
4 bit—string conversion , or to force conversion to bit—string.

Format:

EIT( <expression> [, <result length>

The quantity to be converted to bit—string is the source <expression> , arid
the (result length>, when specified, gives the length of the result. The
<result length> term is defined to be a <cvi expression>. If the second
argument is omitted, the length is the <length> or <precision> of the f i r s t
argument.

If the source <expression> is an array or structure , then the conversion
of each member is returned.

The rules for conversion to BIT depend on the type of source data . The
rules follow:

If the source is BIT:

(1) If the source <expression> is the null st r in . the result is null .
(2) If the length of the source <expression> matches the

<resul t length> value, or the latter is omitted , the result value is the
value of the source <expression> .

(3) If the length of the source <expression> is less than the specified
<result length> value, the converted result is padded on the right with

1: 4...30
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2. Scalars are promoted to structures by forming a structure whose
merrbers each have a copy of the scalar value.

3. Scalars are promoted to arrays of structures by forming an array of
structures whose scalar corr~ onents each have a copy of the scalar value .

4. Structures are promoted to arrays of structures by forming an array
of structures whose array elements each have a copy of the structure
value .

A data item which is an array cannot be promoted to another aggregate
type.

Example:

declare ( A [5], B[4), C[2, 2) ) fixed(3l, U);

In this example, there are no valid promotions between any pairs chosen from
A, B, and C.

4.7 Built—in Functions

4 These functions are def ined as par t of the language and are shown in
five classifications.

1. String Built—in Functions.

*BIT BCOL COLLATE
COPY EVERY HIGH INDEX
LENGTh LO~ SOME STRING
SUESTR *VA~~ HAR V~~IFY

2. Arithmetic Built—in Functions.

AES ADD *CARDINAL CElL
DIVIDE *FIXfl) *FWAT FLEER
IND EX FIfST INDEX !~A.XINDEX MI~4 II’.?TERVAL TEST !-~AX
MIN MOD MULTIPLY PRECISION
SUEThACT TRUNC

4. Mathematical Built—in Functions.
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call 51J13R(x);

In this example, the scaler argum ent x is promoted to a two—dimensional array
of one element whose value is x.

4.6.2 Types of Promotion

The language defines promotion for these four combinations of data
organization:

from scaler to array
from scalar to structure
from scalar to array of structures
from structure to array of structures

The language does not define promotion from arrays to any aggregate
type , nor does it define promotion from structures to any aggregate type
other than arrays of structures.

The word promotion indicates a ranking of aggregate types, and the
promotion of the operands of infix operators utilizes this ranking. The
aggregate types are ranked as follows:

highest array of structures
equal array or structure
lowest scalar

There are four rules for promotion and they atYply as shown here :

‘IC : array of structure array scalar
-
~ FRO1~j : structures

array of — none none none
structures
structure (4) — none none

• array none none — none
scalar (3) (2) (1) —

4.6.3 Promotion Rules

1. Scalars are promoted to arrays by forming an array whose elements
each have a copy of the scalar value.
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4.6 Conformance of Aggregate Types

An aggregate type refers to t~ e dimensionality , array—e xtents, and
structur ing of a set of (scalar) values (defined in section 3.3). A value
conforms to art aggregate type if it has the dimensionality, array—extents and
structuring specified by the aggregate type . when a value does not conform
to the aggregate type r equired by the context in which the value appears, it
is promoted , if possible , as required by the context. If the promotion
required is not defined, the program is in error . The types of promotions
are def ined in section 4.6.2.

4.6.1 Contexts That Force Promotion

Promotion is attempted in the following contexts:

1. The aggregate type of the value of the <expression> of an
(assignment statement> may be promoted to the aggregate type of the
‘~target> of the <assignmen t statement> .

2. The value of an argument of a <function reference> or
<call statement> may be promoted to the aggregate type of the
corresponding <parameter descr iptor> of the entry declarat ion .

3. The two operands of infix operators are promoted to the higher of
the aggregate types.

4. The value of a (return value> is promoted to conform to the
aggregate type specif ied by the <returns attr ibute) of the <entry>
definition in the <routine statement> in the or <procedure statement>
whose execution created the current block activation.

These contexts supply the dimensionality and structuring of the
resultant aggregate type. If a <parameter descriptor > or a
<returns descriptor> specifies asterisk array—extents, the resultant
aggregate has an array—extent of one in each dimension ; othe rwise , the
constant array—extents of the <parameter descriptor) or <returns descriptor>

• supply the array-extents of the result.

Example:

declare SUER entry ( (* ,*) f ixed(15 , 0) ) ;
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key: meaning:

“always” There are no error cases. These conversions
satisfy the order ing referred to above.

“some” The source 1r4.ist have a value in the
range allowed by the resultant data
type, otherwise an error situation occurs
which cart also raise a condition such

- as SI ZE, OVERF W~. , or COWERS IC~.

Result Source
Type Type: BIT CARDINAL- FIXED FLOAT CHARACTER

BIT - always some some some
CARDINAL always — some some some
FIXED always always — some some
FLCAT always always always — always

- C}iAI’~ACTER always always always always —

The conversion builtin functions and are more completely specified in
section 4.7.

It
4.5.2 Cardinal to Fixed

Any value of type <cardinal> may be assigned to a target of type <f ixed>
with no loss of precision . The precision of the latter must be as large as
that of the <cardinal> expression value, if not the SIZE condition is
signalled.

4.5.3 Fixed to Cardinal

The conversion of values from <fixed) to <cardinal> is performed as

follows. If the value is negative or non—integral , the SIZE condition is
signalled. Otherwise, for non—negative inteqer values, the value of the
source <f ixed>  expression is assigned to the <target>.

The precision of the (target> must be as large as that o€ the <fixed>
I ~ expression value in order to retain all significance. If the precision of

the <target> is not adequate to hold the source expression value, the SIZE
condition is signalled .
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The comparison of bit—string values is performed by (effectively)
extend ing the shorter operand to the length of the longer operand (padding
the shorter on the right with zero bits). The two operands are then compared
bit—by—bit left—to—right with a zero bit comparing less than a on~ bit.

- t~ try values compare equal only when they correspond to the same entryand the same block activation record (see section 5.3) .

File values compare equal only if they represent the same declared file
(constant).

4.4.4.3 Relational Operator Results

Relational operators compare the values of their operands and yield a
bit—string of length 1. The value of the result is B’l’ if the relationship
holds; otherwise, the value is B’ø’ .

4.5 Conversions

The conversions defined for infix and prefix expressions are those
between the data types <fixed> and <cardinal> ; these are implicit
conversions. All other conversions are caused by the explicit use ofconversion bui l t in  functions .

4.5.1 Conversion Order

~~~~~~~ There is an implicit low to high hierarchy for conversions in the order

EIT , CARDINA L, FIXED , FLOAT, and CHARACTER

in the sense that a one—to—one mapping of values is defined only in the
ascending direction.

- - 
- There are no conversions allowed for data types entry and file. The other

data types can be converted as summarized below:
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with the value of the second ~~~~~~~~~~~

4.4.4 The Relational Operators

The relational operators consist of the complete set:

= equal (equivalence)
-

= not equal
< less than

< not less than
< less than or equal
> grea ter than
~> not greater than
>= greater than or equal

4.4.4.1 Operanãs for Relational Operators

Comparison is performed between values of the same data type. If the
operands are of different types, they must be converted as follows:

~ If either oper and is ar ithmetic , the operand ~nich is not
arithmetic must be converted by explicit use of the FIXED ,
CARLINT-L, or FLOAT built—in function.

~ If one operand is a bit—string and the other is a character—string ,
conver t the forme r (using the CHARAC’rEt~ built—in function) to a
character—string whose length is that of the bit—string .

All conversions are per formed according to the rules given in
section 4.5.

4.4.4.2 ‘lypes of Comparison

The non—ecu aiity operators are defined for all data types.

Character—str ing , bit—string , and arithmetic values may be compared
using any of the relational operators. Since there is no ordering defined ,
ent ry and f i le  values can only be compared using the eoual operators.

Arithmetic values are compared algebraically.

The comparison of character—string values is perfor med by (effectively)
extendin g the shorter  operand to the length of the longer operand (padding
the shor ter on the r ight with blank characters) . The two strings are then
compared character—by—character left—to—right using the ASCII collating
sequ ence .
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Data References and Expressions

4.4.2.2 Bit—string Infix—operator Results

For bi t—str ing inf i x operators the resul t length is the max im um of the
lengths of the two operands. If the operands are of differen t lengths, the
shorter operand is effectively pa&ied on the r ight with zero bits to the
leng th of the longer operand.

The operations are per formed on a bit—by—bit basis. Each bit of the
result is developed by per forming the indicated logical operation on the
corresponding bits of the two operands . The following defines the logical
operations for a given bit pair.

x y x And y x c r y  Not x

I I
t O  I S  I 0 I 0 1 I

t o  i i  t I i i. i
I i  I S  3 I 1 0 I
I i  I i  I 1 I 1 I 3
I 
_ _ _ _  I _ _ _ _  _ _ _ _  I _ _ _ _ _  I 

_ _ _ _  
I

4.4 .3  The String Operator

The str ing operator is concatenation and is denoted by H.  It is an
infix operator that yields a string value of either type bit or character.

If both oper ands are bit—string s , no conversion is needed and the result
is a bit—string ; otherwise , the result is a character—string and both
operands must be (expl icitly) converted to character—strings according to the
rules given in section 4.5. The lengths of the conver ted operands are
determined by one of the following rules:

~ An arithmetic operand rtiist be converted (using the CHARACTER or VAFCHAR
built—in fu nction ) to character—string with length chosen according to
the conversion rules for that arithmetic type.

A bit—str ing operand must be conver ted (using the CHARACTE R or VA~~HAR
built—in function ) to a character—string whose length is at least that
of the bit—string.

The result is a string whose type is the coninon string type of the
operands, and whose length is the sum of the lengths of the operands. If
either operand has the <varying> attr ibute, the result will also have it.

The value of the result is the value of the f i r s t  operand concatenated

4—23
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conditions result

x C  and y>O C

x=C and y<=C signal error condition

x~~O and Y=~ 1

x<C and Y is not a signal the error
<constant integer> condition

For other cases the result is an approximation to the actual value .

4 .4 .2  Bit—st ring Operators

The bit—string operators are:

t Sy~rbol Operator For IT

complement pr ef i x
I inclusive or infix
& and infix

Bit—string operators require bit—string operands; they do not force
conversion of their operands to bit—strings , however explicit conversions can

- 
ç be written using builtin functions. The latter operate according to the

rules given in section 4.5. The lengths of the conver ted operands are
defined by the following rules:

A character—string operand must be converted (using the BIT bui lt in
function) to type hit—string , normally the same length as the
character—string.

g An arithmetic operand must be converted (using the BIT built—in
- function) to type bit—string with length as defined in section 4.7.

— 4 .4.2.1 Eit—str ing Prefix—op erator Results

The complement operator is the only prefix operator .

The result of the complement operator has the same bi t—str ing attributes
as the ope r and . The result value is the complement of the value of the
converted operand (each 1 bit becomes a C bit , and each C bit becomes a I
bit) .
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Data References and Expressions

allowed, and that as many fract ion ’I  digits are preserved as are allowed
by the implementation. Use of these values as operands of other
fixed—point comp.itations can lead to states of computation that  produce
the fixedoverfiow condition .

Example:

c eclare (A, B) fixed (7, 0)
C fixed (7, 0);

... A/B + C

The precision of the quotient is (63, 56); for many values of A, F~, andC the fixedoverflow condition could occur. It does so because the
div ision yields a f raction ; then the addition attempts to align the
radix points by scaling the value of C. As a result of the latter, the
precision of the scaled quantity exceeds the l imit (N=63) of the
machine—system.

The DIVIDE built—in function described in section 4.7 can be used
to control the precision of the result of fixed—piont (or
floating—point) division.

Note: if the relation p4q—s = N holds , the quotient is an integer .
For example, if X and Y are integers of maximum precision (N, 0 ) ,  then
the cuotient of X / Y has precision (N, 0).

Implementation note: A max_precision option could be a desirable
procedure <entry option>.

Power operator (**)

If the second operand is a constant or a <decimal integer> whose value
is denoted by E, the result is fixed—point only if ((p+l)*E_1) < N;
otherwise, the first operand is converted to floating—point and the
rules for algebraic exponentiation apply.

- 
- In cases for which the result is fixed—point , the precision is

given by:

— ( (p-I-l) * E — 1, q*E)

The value of the result is the value of the first operand multipl ied by
itself E— l times.

In the following cases, if X is the first operand and Y is the
second operand, X ** I is defined as follows:
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Format:

LOG2( <expression>

The value returned has the same data type as the operand. If <expressiorl> is
an array or structure, then the logarithm of each member is returned.

4.7.3.3 SI:.

The SI~ built—in function wil l find the sine of a given value , which is
expressed in radians.

Format:

- 
SIN( <expression>

The <expression> term must be either fixed—point or floating—point. The
value returned is the sine of <expression>, where <expression) is in radians.
If <expression> is an array or structure, then the sine of each member is
returned .

4.7.3.4 SQF~1

The SQ~ built—in function will find the square root of a given value .

Format:

SQ~~ ( <expression>

The <expression > term must be either fixed—point or floating—point, and
positive. The value returned is the square root of <expression>. If
<expression > is an array or structure , then the square root of each menber is
returned . The ERROR condition will be raised if any member of <expression>
is negative.

4.7.3.5 TAi~

The TAj~ buil t—in function will find the tangent of a given value, which
is expressed in radians.

Format:

TAi-~( (expression >

The <expression> term must be either fixed—point or floating—point . The
value returned is the tangent of <expression> , where <expression> is in
radians. If <expression> is an array or structure, then the tangent of each
member is returned. The ERROR conditior will be raised if any member of
<expression> represents a value of either 90 degrees or 27C degrees.
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4.7.2.19 TRUNC

The TRUNC built—in function will truncate a given value to an integer .

Format:

TRUNC ( <expression>

The result of TRUNC is not larger than <expression> in absolute value. If
<expression> is an array or structhre, then the TRUNC of each member is
returned.

The function first determines if a value if positive, negative, or equal
to 0. If the value is negative, TRUNC returns the smallest integer that is
not less than that value. If the value is positive or zero, TRUNC returns
the largest integer that does not exceed that value.

In tabular form :

magnitude of <expression> value produced

less than zero CEIL( <expression>
zero or greater FL~CR( <expression>

4.7.3 Mathematical Built—in Functions

4.7.3.1 COB

The COB built—in function will find the cosine of a given val ue , which
is expressed in radians.

Format:

COS ( <expression>

The <express ion> term must be either fixed—point or floating—point. The
value returned is the cosine of <expression > , where <expression> is in
radians. If <expression> is an array or structure, then the cosine of each
member is returned .

4.7.3.2 UJG2

The LOG2 built—in function will find the binary (base 2) logar ithm of a
given floating—point or fixed—point value.
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Format:

~1ULTIPLY ( <expression>, <expression> , <result precision>
t ,  <result scale> I

The first two <expression s are multiplied together to produce a result with
precision specified by (result precis ion> , and with scale specified Ly
<result scale>. If the type of the result is floating—point , the
<result scale> tern is not allowed. If the first two <expression>s are beth
arrays or structures, then the product of each membe r is returned . The rules
governing conformance and promotion (4 .6)  apply when multiplying the two
<expression>s together .

4.7.2.17 PR.CCISIOr ;

The PRECISION built—in function will convert an arithmetic value to a
specified precision.

Format:

PRECISIO~~( <ex pression> , <result precision>
[, <result scale>

The <expression> terni must be either a f ixed—point  or a floating—point val ue .
The <result precis ion> term specif ies the precision and the <result scale>
term the scale. If the type of the value of <expression> is floating ooint,
only the <result precision> term is allowed . If <expression> is an array or
structure, then the PRECISIOt~ function is applied to each member .

4.7.2.1~ SUDT RAC~-

The SLT~TSACT bui l t—in funct ion will control the precision of a- - subtraction operation .

- - Foriat:

SUBTF.ACI( <expression> , <expression> , (result precision>
[, (result scale>

The second <expression> is subtracted from the first <express ion> and the
resulting value will have precision as specified by the <result precision>
term and scale as specified by the (result scale> tern . If the resultin~value is of type floating—point , then only the (result precision> term rnr y bc
specified . If <expression> is an array or s t ructure , then the SUETR~C~ of
each member is returned . The rules governing conformance and pror~tion (4.6)apply when subtracting the two <expression>s.
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returned is B’Ø’. If <expression> is an array, then a bit—string array (of
length one) of values is returned.

4.7.2.13 MAX

The MAX bui l t—in function will  ~. xtract the highe r —val ued expression from
a given pair expressions. If the two <expression>s are arrays, then an arr ay
consistir~ of the higher value of each pair is returned.

Format:

MAX ( <expression > , <expression> )

4.7.2.14 ~-a:~

The MLN built—in function will extract the lower—valued expression from
a given pair of expressions, possibly arrays of matching extents. If the two
<expression>s are arrays, then an array consisting of the smaller value of
each pair is returned.

Format:

MIN ( <expression> , <expression>

4.7.2.15 MCD

The t-~~ built—in function will determine the remainder resultinQ from
dividing one arithmetic quantity by another.

Format:

~OD( <expression> , <expression>

The value returned is zero if the second <expression> is zero. Ctherwise the
value is given algebraically by

MCD ( x , y) = x — y * FLOOF< (x /  y)

If <expression > is an array or structure , then the ~~ of each member is
returned . The rules governing conformance arid proniotion (4.i4 apply when

- divid ing the first <expression> by the second.

4.7.2.16 r-~ULTIpLY

The MULTIPLY built—in function controls the precision of the result of a
multiplication operation.
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Format:

~VLTIPLY( <expression> , (expression> , <result precision>
1, (result scale>

The f i rs t two <expression>s are multiplied together to produce a result with
precis ion specified by <result precision> , and with scale specif ied by
result scale>. If the type of the result is floating—point, the

<result scale> tern is not allowed. If the f i r s t  two <expression>s are both
arrays or structures, then the product of each member is returned. The rules
governing conformance and promotion (4 .6)  apply when multiplying the two
<express ion>s together .

4.7.2.17 Pnccisio~:
The PRECISION built— in function will convert an arithmetic value to a

specified precision.

Format :

PRECISION( (express ion> , <result precision>
1, <resul t scale> 3

The <expression> tern must be either a fixed—point or a floating—point value .
The <result precision> term specif ies the precis ion and the <resul t sca le>

ç term the scale. If the typ e of the val ue of <expression> is float ing ooint ,
only the <result precision> term is allowed . If <expression > is an array or
structure , then the PRECISIOr: function is appl ied to each member .

4.7.2. 16 SUCT~ACi

The SLT6TRPCT buil t—in funct ion will control the precision of a
subtraction operation .

Format:

SIJBTRACI ( <expression> , (expression> , (result precision>
[ ,  <result scale> I

The second <expression> is subtracted from the first (expression> and the
resulting value will have precision as specified by the <result precision>
term and scale as specified by the <result scale> tern.. If the result ing• value is of type floating—point , then only the (result precision> term m~y be
specified , if <expression> is an ar ray  or s t ructure , then the SUFTR~C~ of
each member is returned. The rules governing conformance arid promotion (4.6)
apply when subtracting the two <expression>s.
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Format:

IND EX FIRST( <expression>

This function will examine <expression> , a bit—string array , and return the
value of the index of the f i r s t  item or element- of <expression> con tainiri ;
any bit with a value of one. If all items of <expression> are equal to E’~ ’,
a value of zero will be returned .

4.7.2.10 INDEX_1~AX

The INDEX MAX built—in function will determine the index of the largest
• value in a single dimensioned array.

Format:

INOEX_MAX ( (expression>

This function will examine (expression > , a one dimensioned array,  and return
the value of the index of the array element member whose value is the
largest. In the event of more than one array member having the same larges t
value , the smallest index value will be returned .

4.7.2.11 IUDEX_MIN

The INCEX MIt~ buil t—in function will determin e the index of the smallest
value in a sin;le dimensioned array .

Forirat

INDEX_~IN( <expression>

This function will examine <expression>, a one dimensioned array, and return
the value of the index of the array element member whose value is the
smallest. In the event of more than one array member having the same
smallest value , the smallest index value will be returnec~.

4.7.2.12 INTERVAL_TEST

-: The INTERVAL TEST buil t—in function will perfor m an interval comparison
test.

-t

-; Format:

IRTE.RVAL_TEST ( <expression>, <lower limit> , (uppe r limit>

This function returns a value of type bit—str ing (length one). If the value
of <expression> is greater than or equal to <lower limit> , and less than cr
equal to <upper limit> , then the value returned is 13’l’ , otherwise the val ue
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If the <result precision> term is less than the precision of the source
<expression>, the OvERFrIX condition will be raised. Otherwise the FIXD
source <expression> is converted to the equivalent floating—point
representation and assigned to the target. -

If the source is CHARACTER:

The precision of the converted result will be specified by the
<result precision> term, unless omitted. If omitted, the precision of the
converted result is derived as follows: Let len be the declared length of
the source <expression>, then the precision of the converted result is equal
to CEIL(3.32*len).

The source <expression> must consist only of characters as specified by
the definition of a <floating—point constant> . It is then converted to its
base two radix equivalent. Thus the converted result of a given character
string is simply its base two radix equivalent with precision as specified
above.

If the <result precision> term is specified , and it is less than
CEIL(3.32*len), then the SIZE condition is raised and the converted result is
undefined. If the source <expression> consists of characters other than
allowed for a <floating—point constant>, the CONVERSION condition will be
raised. The CEt’JVERSIOrJ condition will also be raised if the
<result precision> term is omitted and the length of the source <express ion>
is null .

4.7.2.8 FL~~R

The FLCOR built—in function will determine the largest integer that does
not exceed a given value .

Format:

FLOOF~( <express ion>

The <expression> term must be of type a r ithmetic , and the value retu;ned will
be the largest fixed—po int scaled zero integer that does not exceed
<expression>. If <expression> is an array or structure, then the FLO3R of
each member is returned .

4.7.2.9 IND EX FIRST

The INDEX FIRST built—in function will determine the smallest index
position of a one bit in a bit—str ing array.
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If the source is CHARACTER:

The precision of the converted result will be Specified by the
<result precision> term , unless omitted. If omitted , the precision of the
converted result is derived as follows : Let len be the declared length of
the source <expression> , then the precision of the converted result is ea~~1
to CEIL(3.32*len).

The source <expression> must consist only of characters as specified by
the defini t ion of a <decimal fixed—point constant>. It is then converted to
its base two radix equivalent. Thus the conver ted result of a given
character string is simply its base two radix eouivalent with precision as
specified above .

If the <result precision> term is specified, and it is less than
CEIL(3.32*len), then the SIZE condition is raised and the converted result is
undefined. If the source <expression> consists of characters other than
allowed for a <decimal fixed—point constant> , the C VEPSIOU condition will
be raised. The CONVERSIC~: condition will also be raised if the
<result precision> term is omitted and the length of the source <expression>
is null..

4
4.7.2.7 FLOAT

The FLOAT buil t—in function controls the precision of the result of a
conversion to floating—point.

Format:

FWAT( <expression> [, <result precision>

The <expression> is the value to be converted to floating—point. ~1tc<result precis ion > tern,, when present , specifies the precision of the res u1~t.
If <expression> is an array or structure, then the conversion of eac~. member
is returned.

The rules for conversion to FLOAT depend or. the type of source data.
The rules follow:

If the source is BIT:

The source <expression> must first be converted to CARDIt~1-.
t
~.

If the source is CARDI9.4L:

The source <expression> must first be converted to FIXED.

If the source is FIXED:
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<result scale> term, when present, specifies the scale of the result. If the
result is a floating point value, then only the <result precision> term may
be specified. If <expression> is an array or structure , then the div ision of
each member is returned. The rules governing conformance and promotion (4.6)
apely when dividing the first <expression> by the second.

4.7.2.6 FIXED

The FIXED built—in function controls the precision of the result of a
conversion to fixed—point.

Forma t:

FIXED( <expression> 1, <result precision> [, <result scale> ) I

The <expression> is the value to be converted to fixed—point. The <result
precision> term specifies the precision, and the <result scale> term the
scale of the result. If <expression> is an array or structure, then the
conversion of each member is returned.

The rules for conversion to FIXED depend on the type of the source data.
- The rules follow:

If the source is BIT:

-: (1) The source <expression> must first be converted to CARDINAL.

If the source is CARDINAL :

The precision of the result will be specified by the <result precision>
term , unless omitted . If omitted , the precision of the converted result is
that of the source <express ion> . See section 4.5.1 for fu r the r  discussion.

If the source is FIXED :

In this case only the precision is altered. See the PR~~ISION built—infunction for further discussion.

If the source ~s FLOAT:

If the optional (result scale> term is omitted, a fixed—point scaled
zero value is returned . If the <result precision> term is omitted, the
precision of the source <expression> will be the precision of the result. If
the <result precision> term is specified, and the value of the floating—point
<expression> canno t be contained in the range of values allowed by the
<result precision> and <result scale> of the target, the SIZE condition is
raised . Otherwise , the source (expression> is converted to a f ixed—point
value with precision and scale as specified.
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The source (express ion > mus t consist only of blanks and/or decimal

dig its . It is then converted to its base two radix equivalent. Thus the

-~~ converted resul t  of a given characte r str ing is simpl y its base two radix

equivalent ~itr precis ion as specified above

If the <result precision> term is specif ied , and it is less than

CEIL (3.32*len) , then the SIZE condition is raised 
and the conver ted result is

undefined. If the source (express ion> consists of characters other than

blanks and/or decimal dig its , the COWVERS I3~ condition 
will be raised. The

~O ERSI~~ condition 
will also be raised if the <result precision> is

unspecified and the length of the source 
<expression> is null.

If the source is FIXED:

The precision of the result will be specified by the <result precision>

term, unless omitted. If cxnitted , the precision of the converted result is

that of the source <expression>. See section 4.5.2 for further discussion
.

If the source is FLOAT:

The source <expression> must first be 
converted to FIXED.

4.7.2.4 CElL

The CElL built—in function determines the smallest integer that is

greater than or equal to a g iven fixed or floating point expression.

Format:

CEIL( <express ion>

The value returned by CElL will be the smallest fixed—point scaled zero

integer number that is greater than or equal 
to the fixed or floating point

value represented by (expression>. If <expression> is an array or structure ,

then the CElL of each member is returned.

4.7.2.5 DIVIDE

The DIVIDE buil t—in function controls the precision of the result of a

divide operation.

Format:

DIV1DE( <expression> , <expression>, <result precision>
( ,  <result scale>

The fi r s t  (expression> is the dividend and the second <expression > i:

divisor . Both must be arithmetic and of the s~~c ty~
<result precision> tern specifies the 

precision of the result , ~
.- -
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Input/Output

8. INPUT /OUT P UT

8.1 Introduction

This language includes input and output statements which enable data to
be transmitted between internal storage and peripherals. A collection of data
external to a program is called a dataset. Transmission of data from a
dataset to internal storage is called input, and transmission of data from
internal storage to a dataset is called output.

Input and output statements , from a language viewpoint , are associated
with the logical organization of a dataset and not with its
physical(environment) characteristics. The Input/Output statements can be
defined without specific knowledge of the physical characteristics of the
peripheral devices that will be utilized.

To permit a source program to consider the logical aspects of data
rather than the physical characteristics in a dataset , the language will
provide a symbolic representation of a dataset called a file. A file can be
associated with differen t datasets during the execution of a program.

In this language record—oriented input/output will be supported. In
record—oriented transmission, the data is considered to be a collection of
discrete records, No data conversion takes place during the record
transmission.

The advantages of record—oriented transmission are :

1) more efficient execution since no conversions are
performed

2) less space is required on externa l storage devices
3) any format is acceptable
4) programme r has more control and awareness of the

structure of the data.
p

This chapter will cover the syntax and semantics ot record—oriented
Input/Output .

8.2 Datasets
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Assignment and Allocation

Examples:
Allocate an array dynamically using the current value of x for the

extent of its dimensions.

declare A (X, X) bit(32) controlled

X 16;
allocate A

7.3 FREE Statement

Syntax:

<free statement> ::~ FREE <reference>
I , <reference> ]

The FREE statement releases storage from association with a variable
having the CONTROLLED atribute, When the storage is freed , it can be used
for other variables .

The “reference” must be an unsubscripted level—one variable. If it has
no storage allocated to it when the FREE statement is executed , no attempt is
made to free it.

Examples :

Allocate an array B with two different extents at different points
during execution of the program.

declare R(X, X) fixed(31 , 0) controlled ;

X~~~8;
allocate B;

free B;
X — 16;
allocate B;

free B;

The combined use of the ALLOCATE and FREE statements can facilitate more
efficient use of storage in certain situations. If many small allocations
are needed , prudent usage of ALLOCATE and FREE can minimize fragmentation .
For exam ple, the size of such variables in one program could all be multi ples
of each other or all multip les of powers of t~~~ .
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Assignment and Allocation

Wheneve r the <targe t> reference is an array, and the source <expression>
value is a scalar , the scalar value is replicated and stored into all
specified elements of the <target> reference array.

7.1.4 Structure Assignment

Structure assignment applies when a <target> reference is a Cstructure>.
if the source <expression> value is a scalar , it is assigned to each member
of the <target> structure according to the rules of scalar assignment .

if the source <expression> value is a structure> , the source
<expression> and <target> reference must have conforming structure for
corresponding containing levels. The number and struc ture of containing
members must match on each level. Structure members from the <expression>
are promoted to an aggregate value that conform s with the corresponding level
of the <target> reference and are converted , where allowed , to the <target>
member data type . The possibly promoted and converted value is assigned to
the <target> member. The promotions and conversions do not effect the value
of the source <expression> .

As is the case for array assignment , the order of assignment of
individual data items in structure assignment is not specified and any
assignment which depends on the order is in error.

7.2 ALLOCATE Statement

Syntax :

<allocate statement> ::~ ALLOCATE ‘allocate list>
<allocate list> ::— (allocate reference>

<allocate reference> ]
<allocate reference> ::— <identifier>

The ALLOCATE statement allows control of association of a dynamic
variable (one having the attribute CONTROLLEE)) with storage . The execution
of the statement causes storage to be allocated for a specified variable or
list of variables.

The amount of storage to be allocated , called the “extent ” of the
variable , is supplied in the declaration of the variable and can be
non—constant in value . If insufficien t storage exists within “system
storage”, the STORAGE condition occurs(see sect ion 9).

The variables allocated rema in so when control leaves the block in which
the allocation was performed . The variables arc dis—associated from storage
by the FREE statement.

7—4
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Assignment and Allocation

( i+j— 1)— th character or bit. All other characters or bits of the string are
unmodified .

7.t.2 Array Assignment

If the <target> is an array reference , array assignment is performed to
each of the elements of the reference. Various cases app ly according to the
aggregate type of the source <expression> . If the <expression> is a scalar ,
then a replication is perfo rmed as described in the next section. —

If the source <expr ession> is an array the value of the <expression> and
the <target> reference must have the same number of dimensions. The
assignment is performed by doing scalar assignments on an element—b y—e lement
basis in each dimension using identical subscript values for the source and
target.

The order in which the assignment to ind ividual elements is done is
deliberately left unspecified. Any assignment in which the order of
assignment to array elements is significant is incorrect and the program is
in error.

For each dimension the rule of “the lesser of the two corresponding
extents” applies (see also section 4.6 on “Conformance”) when assigning the
array element values to the corresponding items of the <target> reference.
The rule is defined as two cases which apply to each dimension of the arrays
below.

Case 1: The given d imension of the <target> has a smalle r number
of elements than the corresponding dimens ion of the source
<expression> array.

Result: The assignment of elements is complete when the extent
of the <target> reference is reached . Also alignnent of array
elements occurs before the assignments are made . Unused elements
in the source array <expression> do not participate in the
assignment operation.

Case 2: The given dimens ion of the <target> has a larger numbe r
of elements than the corresponding d imension of the source array
<expression> .

Result: The assignment of elements is complete when the extent
of the source array <expression> is reached . Unused elements in
the <target> array do not partici pate in the assignment operation.

7.1.3 Scalar Broadcast Assignment

7—3
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Assignment and Allocation

7.1.1.2 String Assignment

If the <target> is of type string, string assignment is performed .

If the source <expression > is a <reference> to a scalar character—string
or bit—string variable , the generation of storage identified by that
<reference> cannot overlap the generation identified by the <target>
reference , unless the (target> and the source <reference> identif y exactly
the same generation of storage.

For a <target> with the <varying> attribute the length of the source
<expression> string must not exceed the declared maximum length for the
<target> . If it does, the STRINGSIZE condition is signalled (see section 9
for conditions) and the assignment does not occur . If the length is not
greater than the declared <target> maximum length , the source <expression>
string value is assigned to the <target> reference. The length of the
<expression> becomes the new length of the <target> string value .

For a <target> without the <varying> attribute , if the source
<expression> string value is longe r than the deciared length of the <target>
reference then it is truncated on the righ t to the length of the <target>
string. If the <expression> is shorter it is padded on the rig ht with ASCIi

4 
blanks to the length of the <target> string .

7.1.1.3 Arithme tic Assignment

The source <expression> is assigned to the <target> according to the
precision rules for infix operations as defined in section 4.4.

7.1.1.4 Substr Pseudo Variable

If the (target> is the <substr pseudo> , the values of the <expression>s
must be either fixed—point integers or of type <cardinal ). Let I be the
value of the first <expression> and j be the value of the second
expression>. If the string variable identified by the <reference> is

deciared with the (varying > attribute , let n be the cur rent length of the
string variable value ; othe rwise, let n be the evaluated string length
associated with the variable ’s generation of storage .

If the second <expression> is omitted , let j be n—i+1, If
(0 <— i—i — j+I—1 — n) is not satisfied , the STRINGRANGE condition occurs.
If detection of the condition is disabled , the program is in error and the
results of continued execution are undefined.

If the inequality is satisfied , the value is assigned to the string
variab le beginning with the i—tb character or bit and continuing through the

7—2
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ABS 4.7.2.1
Activated 5.4.1
Ac tivation record 5.4.1
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•
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Complete Syn tax

<file option> ::= FILE( <reference>
(into option> INTO( <reference>
<from option> :: FR~ 1 ( <reference>
<ignore Option> :: IG~ORE( (expression><key option> ::= KEY( <expression>
<keyfrom option> ::= KEYFROM( <expression> )

SECTION 9 SYNTAX

Section 9.1

<condition name> : = C~~VE~~ION
I ~ ‘DFILE ( (reference> )
I ERROR I FINISH
I FIXEDOVERFLZXr.
I KEY ( (reference>

• I OVERFLO~I RECORD ( <reference>
I SIZE I S~IORAGE I STR1!~~RANGE
I STRINGSIZE I SUBSCRIVTRANGE

4 I TRANSMIT ( <reference>
I UNDEFI~ EDFILE ( (reference> )
I UNDERFLOI~ I ZERODIVIDE

• Section 9.2

<on statement> ::= ON (condition name> <on—unit>
(on—unit> <statement list> EN~ )N;

I (SYSTEM]

(rever t statement> ::= REVEI!I <condition name>
,<condition name>]...

(signal statement> ::= SIGNAL <condition name>;

I
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Cc*nplete Syntax

SECTION 8 SYNTAX

Section ~3.3

<fi le  attr ibute> ::= FILE ;

<record attribute> :: RECORD

<input attribu te> ::= INPUT
<output attribute> :: W~PUT

<urxiate attribute> UPDATE
<sequential attribute> := SEQUENTIAL
<direct attr ibute> ::= DIRECT
<keyed attribute> :: KEYED

<environmen t> ::= ENVIRONM~~T( (option list>)

(open statement> ::= OPEN (single open>
E , <single open>

<single open> ::= <file option>
RECORD ]

~ 
[ <title option>

• { INPUT I CUIBJT I UPDATE
• { SEQUENTIAL I DIRECT [ KEYED ] 1
• [ <environment> 1

(title option> ::= TITLE ( <expression>

<close statement> ::= CLOSE <single close>
[, (single close>

<single close> ::= <file option >
<environment>

Section 8.4

<read statement> ::= READ <file option>{ <into option > I <ignore option>
<key option>

<write statement> ::= WRITE (file option> <from option>
I <keyfrom option) I

<rewrite statement> ::= REWRITE <file option> <from option>
I <key option> I

• <delete statement> ::= DELE’rE <file option>
I <key option> I

f A—ll
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Complete Synta x

<logical i f>  ::= IF ( <expression>

Section 6.5

<call statement> ::= CALL <entry reference>
I <argumen t list> J ;

(return statement> ::= RETURN [ ( (function value> )(f unction value > :: <expression >

Section 6.6

<goto statement> : := GO TO (identifier>
I 03W <identifier>

Section 6.7

<exit statement> ::= EXIT I (identifier> I

SECTION 7 SYNTAX

Section 7.1

(assignment statement> <target> = <expression >(target> ::= <reference> I <pseudo—variable>
<pseudo—variable> ::= (substr pseudo>
<substr pseudo> ::= substr ( (reference>

(expression> [ , <expression>
Section 7.2

<allocate statement> ::= ALWC~TE (allocate list>(allocate list> ::= (allocate reference>
I , <allocate reference>

<allocate reference> ::= <identifier>

Section 7.3

<free statement> ::= FREE <reference>
I , <reference> I ...
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Ccinpiete Syntax

SECTION 6 SYNTAX

Section 6.1

<iterative loop> DO <step definiUon> <group body>
ENDDO ( <ide. ifier> ]

<step definition> ::= <index> = <e~~ression><iteration control)
<index> ::= <identifier>
<ite ration control> ::= TO <limit> I BY <increment> I
<limit> :: <expression)
<inc rement> ::= <expression>
<group body> ::= <basic statement>...

• Section 6.2

<repetitive loop> ::= <do while> <group body>
ENDDO [ <identifier> I

<do while> ::= DO WHILE C <expression>
<group body> { label prefix>

<basic statement> 1...

Section 6.3

<case group> ::= <case heading> <case body> <endcase>
(case heading> ::= DO CASE <expression>
<case body> ::= <case section>... ( <else case>
<case section> ::= <case prefix>... (basic statement>...
<case prefix> ::= CASE ( <cvi expression>

I (cvi expression> I
<else case> ::= ELSE~ASE <basic statement>...(endcase> ::= ENDCASE [ <identifier>

Section 6.4

<conditional statement> ::= <if statement>
I <ifarray statement>
I <logical if statement>

<if statement> ::= <if clause> <if body> <endif>
<ifarray statement> ::= <ifarray clause>

<if body> <endif>
<if clause> ::= IF <expression)

• (ifa rray clause> ::= IFARBAY <expression>
<if body> ::= <true part> [ <else part> I
<true part> ::= THEN <basic statement> ...
<else part> ::= ELSE <basic statement>...
<endif> ::= ENDIF I <identifier> I
<logical if statement> ::= <log ical i f>

<single statement>

A-9
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Complete Syntax

<procedure body> ::= <procedure co~iponent><routine statement>
<pr ocedure corrç onent> I

<procedure ~~mponent > ::= (statement>

<endproc statement> ::= ENDPIOC <closure identif ier>
<closure identifier> ::= <identifier>

(procedure statement> ::= (label prefix> PIOCEDU RE
I <parameter list> ] )

<procedure option > 1...

(procedure option) ::~ <entry option > I RECUF~~IVE

(entry option> :: (reducible option>
I <returns attribute>

(parameter list> ::= <identifier>
I , <identifier> I

<reducible option> ::= <irreducibl e attribute>
I (reducible attribute>

<irreducible att r ibute> ::= IRREDUCIBLE
<reaucible attribute> ::= REDUCIBLE

<r eturns attr ibu te> ::= RETURNS
<returns descriptor>

(retu rns descr iptor> ::= <descriptor )
I , <descriptor>

(descriptor> ::= <level> [ (attr ibute set>
I [ (level> I <attribute set>

• <routine statement> : := ‘~label prefix> FCUTflE
I C I (pa rameter list> I ) I
I <entry option> I

<entry> :: ENTRY I
I <parameter descr iptor list> ]
I <entry option > J

<parameter descr iptor list> : := <parameter descr iptor >
I , (pa rameter descriptor>

<parameter descriptor> ::= <descriptor >

A-B
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Complete Syntax

Section 4 .3

<expression~. ::= <expression one>
I <expression) i (expr ession One>

<expression one) ::= <expression two>
I <expression one> & <expression two>

<expression two> ::= <expression three>
I <express ion three> <relational> <expression three>

<relational> ::= = -
= I I -< I <= I > I -> I >=

<expression three) ::= <expression four>
I <expression three> H <express ion four>

(expression four> ::= <expression five>
I <expression four> { + I — I <expression five>

<expression five> ::= <express ion six>
I <expression five> { * I / I <expression six>

<expression six> ::= <basic expression>
I <simple expression)
I <paren thesized expression ) I <expression seven>

(expression seven) ::= { <basic expression>4 I <parenthesized expression> I
** <expression six>

<simple expression> ::= I — I — } <expression six>

<parenthesized expression> <expression>

<basic expression) ::= <reference>
I (literal constant> I <i—sub>

(cv i expression> ::= (expression>

SECTION 5 SYNTAX

Section 5.3

<procedure) := <procedure statement>
(procedure body> <endproc statement>
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Sanple Prograr’ Report

/~ Store t o t a l  nunber of points in currentprocessed l ine *1

Vector nunbcrJ~ojnts Ijflde ) nuobor of~~ojnt5F.NZ)UO
ENJ) PRO C follo~.’ l i nes
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Sam ple Program Report

DO dir prey_direction TO
prey direction + number_of_directions

cur_dir ~IO D ( dir— 1 ,8

/ ‘~ Check direction cur_dir for a one bit *1

Do CASC cur_dir

CASE (O): IF(datafi ,j+1))
found succeeding_point =

CASE(1): IF(data [i+1 ,l+I])

• found succeedinC_point = B’l’
CASC (2): IF(data [i+1 ,j))

found succeeding_point =
CASE(3): IF(data[i+1 ,j—1])

• found_succeed ing_point rI
CASE(4): IF(data [i ,j—1 3)

found succeeding_point =
CASL (S): IF(datati—1 ,j—1))

found succeeding_point B 1 ’
CASL (6): IF(data [i—1 ,j))

found_succeeding_point =

CASE(7): IF(data [i—1 ,j+1))
found_succeeding_point = B’l’

ENDC ASC
IF( found_succeeding_point ) EXIT;

E~ DDO ;

IF f ound _su cceed i ng_p oint THEN

• 1* E nte r d i r ec t i on  of discovered point *1

vector_l i st ( i nde x ,n umber  of _poin t s )  = cur_dir
number_of_points number _of _p oints  + 1

1* Start search for next point based on
direction of current point *1

F prey_direction next_direction(cur_dir4-1)

1* Number of possible directions to try is based
• on direction of currer c po int *1

number_of_directions — tahle of trles (cur djr+1]
ENDI F

END DO ;

c—s
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/* Clear boarder around data area

datat l .*) — 0;
data [194,*) = 0;
data l *,1) — 0;
data [*,194) — 0;

/* Examine bi t  vector s tar t .t a g  f or one s, continue
to loop un t il all  star t poin t s have been processed

• *1

DO ~JHlLE ( SO~1E ( st a r t . t ag )  )

/~ Get index of first element set to one

index — INDEX_FI RST ( st ar t . tag )

/* Eliminate from further processing *1

• start(index).tag — B’O’

1* Start  looking in direction I and do up to
7 a d d i t i o n a l  d i r e c t i o n s  as necessa ry *1

• prey_direction 1
4

/* Try next 7 possible directions if ?°I fails ~/

nurib er_of _d i r e c t i o n s  — 7 ;

/* Ob tain coordinates of start point *1

i — start[indcx).x ;
F j = start I i ndex l .y

1* Start with state of “nex t point in the l ine
has been f o u n d ”  */

-

• 

found _succeeding_poin t  B 1

• number_of _p oints  — 1

Do WH ILE (  found _succeeding _poin t  )

1* Assume end point  alread y f o u n d  *1

found_succeeding_po in t  —

line_fo l l ow:
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Sample Program Report

of one mean s another  po in t  was f o u n d , a va lue  of zero  means the  end of a line
has been d e t e c t e d .

NUMBER _OF_POINT S is a v a r i a b l e  c o n t a i n i n g  the  n u m b e r  of po in t s  (or
v e c t o r s )  discovered in a l i n e .

D I R  is a do—loop index and represents the range of d i r e c t i o n s  to be
t r i e d .

CUR_DIR is the d i r e c t i o n  cur r e n t l y being t r i e d  and is a value between 0
• and 7 , r e f e r e n c e  F i g u r e  1.

VU CTOR _LIST is a two dimensiona l ar ray  c o n t a i n i n g  the r e su l t s  of t he
l ine  fo l lowing  procedure .  I t  has a capac i ty  f or  32 ind ividual l ines , each
c o n t a i n i n g  up to 256 vector  va lue s  (up  to 256 p o i n t s) .

VECTOR N UM BER POINTS is an array containing the number of points for
each of the  32 possible  l ines conta ined  in VECTOR_LIST.

2.2 L I N E  FOLLOWING PROCEDURE

follow lines : PROCEDURE;
DECLARE d a ta ( 194 , 194) B I T ( l )  fl~~ORi (mda),

prey_dir ection CARDINAL(4),
numbe r of directions CARI)INAL(4);

DECLARE index CARDINAL(S),
I s t a r t ( 3 2 )  H E W ) R Y ( m d a ) ,

2 t~ g B I T ( I ) ,
2 x CAR DI~ AL(I6),
2 y CARDINAL (16);

DECLA RE found succee~1ing point RIT (I),
n u m h er -f p o i n t s  CAR! ) I~~A L ( I f ~) ,
( d i r ,cu r  d i r )  C A R D I N A 1 ~( 4 ) ,

i • f~ 
in dex ) C A R D I N A L ( 8 )

• v e c t o r  I i  st  ( 32 , 256) CARI)INAL(4) ,
t a b l e  of t r l e s ( 8 )  C A R D I N A L ( 4 )  CON ST A NT

INITIAL ( 3, 5, 3, 5, 3, 5, 3,5) ,
next  d i r e c t i o n ( 8 )  C A R D I N A L ( 4 )  CONSTANT

I N I T I A L ( 7 , 7 , 1 , 1, 3 , 3 ,5 , 5) ,
vector_number_points(32) CARD INALUb ) ;
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Sample Program Report

parallel) such functions as line thinning (reduc ing a line to a single cell
in width), cl utter elimination , and t agg ing  all lines in the array by Storing
their starting coordinates in a table. A starting coordinate may be a
boundary poi nt or an interior point. Beginnin g with a starting point , the
procedure follrn~s the points along a line segment vec tor iz in g  it as it
pr oceeds.

2.1 Defin ition of Variable Names

DATA is a two dimensiona l array of s ing le bit items and contains the
lines to be vectorized. it is oversized by one cell on each border so tha t

a all  s t a r t i n g  po in t s  wi l l  be “ i n t e r i o r  poin ts”. In this way no chec k need be
made when fo l lowing  a l ine to insure the dimensions of DATA are not exceeded .

START.TA 0:; is an a r r a y  of s ing le b i t  it ens  c o n t a i n i n g  a one b i t  va lue  in
eac h index pos i t ion  of a s t a r t i n g  coord ina te , i .e.,  va lues  in the  a r r a y s

• START.X and START. Y are selected .

• START.X is an a r ray  of x coordinate  s t a r t i n g  point  values  of the
various lines contained in the DATA array .

-4
START.Y is an a r r a y  of y coo rd ina t e  s t a r t i n g  point  value s of the

various lines contained in the DAtA array.

P REV D l R E C T l O ~ is a v a r i a b l e  c o n t ain in g  the  d i r e c t i o n  of t he  previous
successful searc h a long  the  l i n e .  In F igure  1 the  colum n of va lues  under
“LATEST POINT” correspond with PR EV_DIRLC TION va lues .

NEXT DIi(ECT1O~ is an a r r a y  of va l ues c o n t a i n i n g  the first direction of
search f o r  the  point  alon g the l ine , and is a f u n c t i o n  of PR EV_D I R E C T I O N .  In
Figure  1 the  column of values under  “FIRST DIRECTIO N FOR NEXT CHEC KE D POINT ”
correspond w i t h  NEXT _DI R ECTION va lues .

TABL E_OF_TRIES is an array containing the maximum number of possible
direct ions in which the succeeding point along a line m ay be f o u n d ,  in
Figure 1 the column of value s under “It DIRECT IONS TO CH EC K” correspond w it h

• TABLE_OF_TRIES values.

FOU ND_SUCCEEDING _POI N T is a single bit tag indicating whether the line
following procedure was successf ul at detectin p a succeeding point. A value

C—2
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Sample Program Report

1. INTRODUCTION

Two applications were selected to illustrate the facilities of the
STAPAN h i g h  order  l anguage  d e f i n e d  in the  s p e c i f i c a t i o n  d o c u m e n t .

The application s chosen demonstrate the language facilities in general ,
and the  specia l  f e a tu r e s  of t he  language  t h a t  make use of the STARAN ’s uni que
a r c h i t e c t u r e .

The f i r s t  sample  program , l ine  f o l l owing, shows the adva nt age o f STARA N
in an a p p l i c a t i o n  t ha t  req uires logic and bi t m an ipu la tions on s i n g l e  h i t
i t ems .  The language , u n l i k e  FORTRAN , provides  the r e q u i r e d  f a c i l i t i e s  to
operate  on b i t  vectors .  This app l i ca t ion  is not p r a c t i c a l  on a s equen t i a l
machine  programmed in FORTRAN.

The second sample program , image magnification , demonstrates the
advan tage  of STARAN in p e r f o r m i n g  para l le l  arithmetic operations. The
language provides parallel vector operations on variable precision numbers.
These fac ilities are not available or practical in a high leve l lang uage on a
sequential machine . The cubic convolution routine which is a part of this
pr ogram i l lus tra tes three methods of pr ogramming to show var ious levels of

4 control provided in the language .

In both sample programs , a compar ison was made to a version written in
APPLE , the STARAN assembly language. The ratio of high level language
instruc t ions (statements) to APPLE i n s t r u c t i o n s  was approx ima te l y 1 to 5.

Since bo th app l ica tions have uniq ue req ui re men ts tha t are no t eas i l y
expressed in e x i s t i n g  high leve l languages , a meaning f u l  compariso n to one of
these languages cannot  be made.

2. LINE FOLLO WIN G -

One of the reasons for choosing this  a lgor i thm as a cand idate for coding
is the na tu re of the process performed . The da ta be ing processed is
essentially binary ones and zeroes representing the raster scanned data of a
map.  I t  is observed tha t the  degree of e f f o r t  and c l a r i t y  of r e p r e s e n t a t i o n
of this  a lgor i thm as wr itt en in h ig h level lang uage are good tes ts f o r  the
prog ramming language .

The line following procedure vectorizes all lines in an array and
outputs the data to various tables . A previous routine has performed (in

C— ’
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Sample Progra m Repor t

1 5 1 6 1 7 1  EIGHT FIRST
14 1X 1 0 1 DIRECTIONAL DIRECTION
1 3 1 2 1 1 1  VALUES FOE N EXT II

LATEST CHECKED D I R E C T I O N S
POINT POINT TO CHECK

I I I~ I
I O I N I * I  0 7 3
I I 1* 1

10 1 1* 1
I INl~ I 1 7 5
1* 1* 1* 1

I tPI
u N I t 2 1 3
1* 1* 1* I

-: 1* 1 10 1
I * J N I  I 3 1 5
1* 1* 1* 1

4 1* 1 I
I * I N I O I  4 3 3
1* 1 I I

1* 1* 1* 1
I* IN I  I 5 3 5
1* 1 10 1

1* 1* 1* 1 -a

I INI I 6 5 3
l o l l

1* 1* 1* 1
I lNI~ I 7 5 5
lOt 1* 1

Figure 1. Vector Increment Search Criteria
N — new po int , 0 — old point
* — cells to chec k
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Sample Progra m Rep ort

3. IUACE I IA G N I F I C A T I O N  U S I N G  C U B I C  CONV OLUTION

This program reads pixel data from magnetic tape and writes the
magnified pixel data on magnetic tape . The program uses the cub ic
convolu t ion  method  f o r  i n t e r p o l a t i n g  i n t e r m e d i a t e  p ixe l  va lues .

The pr ogram assumes a four to one m agn i f ica t i o n  mainly for ease of
reading and u n d er s t a n d i n E .  It should be noted that the magnification factor
and other associated constants in the program could easily be defined as
variables. The magnification is performed in one direction only.

The program consists of a main pr ogran which performs magnetic tape I/O,
and two subroutines: DATAMAP and CUBIC.

DATA1IAI’ arranges pixel data in the 11DA memory to  p e r m i t  t h e  p a r a l l e l
computa t ions  requi red  in the  CUBIC sub r o u t i n e .

CUBIC perform s the cubic convolution al gorithm , and returns the
magnif ied pixel values. The CUBIC subroutine is written us ing  three different
programming approaches to illustrate the programmer ’s flexibility in
controlling the prob len solution.

4

3.1 Definition of Variable Names

FILE_P is the magnetic tape input file; it contains the pixel data. The
record lengths are 512 bytes which represent one scan linc of 8—bit pixel
data.

FI LE_~! is the  ou t p u t  m agn e t i c  tape file; record lengths are 512 by tes
representing one—fourth of a scan line of m a gn i f i e d  p ixe l  d a t a .  Four output
records arc generated for each input record.

N_PIXELS is the numbe r of pixels in a scan line . It  is set to 512 In
this example.

FIX is a vec tor of 8—bit cardinal values. It contains the input pixel
values for a scan line .

‘4
AP 1’E?~DIX
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Sample  P rogram R e p o r t

XU is a 4 e lement  v e c t o r  of 4—hit f r a c t i o n s .  I t  r e p r e s e n t s  the  p o s i t i o n
of t h e  i n t e r p o l a t e d  (n a g n i f i e ~~ p ixel  v a l u e s  r e l a t i v e  to the n—th input pixel
va lue .

C is a v e c t o r  of 4 — b i t  f r a c t i o n s .  I t  is the  XU vec to r  above r e p l i c a t e d
N P I X E L S/ 4  t im e s ( 12 8) .

P IXNO is a vec tor  of 8—bi t  c a r d i n a l  va lues  N_p ix e l s ( 5 12 )  in l e ng t h .  It
c o n t a i n s  the  128 pixel  value s f r o m  PIX ; each p ixel  va lue  is r e p l i c a t e d  4
t imes to g e n e r a t e  a v e c t o r  of length 512.

P IX N conta ins  the  same values as P I X N O  s h i f t e d  up fou r  element  pos i t i ons
• “ i t h  an add i t i ona l p ixel va lue  appended to the  end . Thi s  a d d i t i o n a l p i x e l

va lue  is also rep l i ca t ed  4 t imes .

P I X N I  is de f ined  the same as PI XN sh~ fted up 4 e l e m e n t s .

P I X N 2  is d e f i n e d  the same as P I XN 1  shifted up 4 e l e m e n t s .

*****NOTE : An fWA memory map is provided in the DA TA?IA P
descr ipt ion wh ich fol lows *****

READIN (; is a single bit which is used as a flag to indicate an
end —of—file condition on the input tape .

SEGNO is the number of the segment of the  input  v e c t o r ( P I X )  which  is
cur ren t ly  being processed . SEGNO — 1 f o r  pixel values  1 t h r o u g h 128 ; 2 f o r
pixel values 129 toroug h 256; 3 f o r  pixe l va lues  257 t h roug h 384 ; 4 f o r
pixel val ues 385 throug h 512.

BO thro ugh B8 are intermediate values in methods 2 and 3 of the CUBIC
proced ure. They permit variable prec ision of intermediate computations and
con trol the order of these  compu t at i ons .

C-9
AP I ’ENDI X
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Sample }‘rogra r Report

3.2 Ham Program

1*
~L AIN _PROC functions:

1— Reads magnetic tape records representing.
a horizontal scan line of image data.
Each record contains 512 (8—hit) pixel
values .

2— Calls DATA MAP to a r r a n g e  da t a  in the  HDA
memory for pa rallel execution .

3— Ca l l s  CUBIC to p e r f o r m  the m a g n i f i c a t i o n
func tion (CUBIC returns a vector of 512 8—bit
pixel val ues)

‘I 4— W r i t e s  t he  m a g n i f i e d  image to  a magne t ic
t a p e ( 5 12  p ixels  per record). */

magni f y 4 :  P R O C E D U R E ;

/* D EF INE INPUT AND OUTPUT FI LE* /

DECLARE f ile_p FILE SEQUENTIAL INPUT RECORD ,
f i l e_n F I L E  SE QL 1E~ TI A L O UTPUT REC O R D ;

a DECLARE read in g ,  B I T ( 1 ) ,
n p lxel s  C A R D I N A L ( 1 6 ’~ CONSTA~’T INITIAL(512),
segno C A R D I N A L  ( 4 ) ;

/*DEFINE PIXEL VECTOflS*/

DECLARE (p ixnO , p ixn , pixnl , pix n 2 ) ( n _p ix el s)
CARDINAL (8) ME~1ORY (m da)  , 1* posi tive values 0 to 255 */
u ( n_pixels) FIXED (4,6) PIEMORY (mda),
xu(4) FIXED(4,4),
p ix ( n_pixels) CARDINAL(8);

1* Set increricnt value s for A to 1 magnification ratio.t!

xu ( 1)  — .00;
xu(2) — .25;
x u (3)  — . 5 L ;
x u ( 4 )  — .75;
readin-~ —

C— b
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Sam p le Progra m Report

/*~j pFN flAG~ ET IC TAPE F I L E S * /

OPC~ FILE(f l le_ p) ENVI’~IJNDE NT(C ON S EC~ T lV E , RECSI~~E(n p ix e ]  s) )
(fjle r~) E N V I R O  1E~’T ( C O N S L C L ’ T I V L , R E C S l Z E ( n  pixels)

1* Read n_p i x e l s  pixel values into PIX *1

REA D FILE(fi le_p) INTO (pix) ;
ON ENDFILE (file _p ) read ing = b’O’;

L ,DO~~;
DO WUILE (reading);

/* Initialize counter to process n_p ixels/4 of
the input data. */

seg no = 1;

/* Process n_p ix el s/ 4  generating n_p ixels  of
r~agn if ied p ixel values. -

Generate 4 output records for each input record. */

DO U H I T S E  (segn o < 5);
CALL da tama p (x u , segno) ;
CALL cub ic
WR I T E  F I L E  ( f ile n ) FROM (rl p i xn ) ;
segno = segno +1;

EN U D O ;
REA l) FILE (file_p) IN T O (pix);

ENDDO ;
CLOSE F I L E  ( f i l e p ) , FILE (file_n);
END magnif y 4;

3.3 Data Mapp ing Routine

1*
DATA II A P f u n c t i o n s :

— 1— Replicates p ixel values four times each into
vector PIXNO (512 values——128 pixels input
times 4 rep licatIons)

2— Copy PIXNO to FIX’ sh ifting vector PIXNO up
by four e1enent.~- (i.e. I’IXN (l) PIXND(5),
PI X;~(2) = l’ IXN O(6 ) ,  etc)

3— Copy PIXN to I’IXMl shifting vect or PIX~ up
by four elenents (i.e. PIXNI (1 ) = PIXN(5),
P I X N 1 ( 2 )  = P I X N ( 6 ), e t c )

C—il
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Samp le P r o gra m Repor t

4— Cop> ’ PI XN 1 t o  P I XN 2 s h i f t i n g  P I X N I  up
b y fou r e l e m e n t s  ( i .e .  P I X N 2 ( l )  P1XNJ(5),
PIXN2 (2) PIXNI (6),e tc)

5— Rep licate interpolation increment values
throug h a vector of length 512 (i.e.U ( 1 )
• 1(0 ( 1) ,  12(2) — XU (2), U (3) — XU(3) ,
U(4) — XU(4), U(S) XU(1), 0(6)  — XU(2),

...U (5l1) XU (3), 0 ( 5 1 2 )  — X U ( 4 )

~IDA Data Nap

NDA PIXND PIXN PIXN ] PIX~;2 U INTERME DIATE N1’IX~
1~?OPd) VALUES

0 p(n—i ) p(n) p (n+i ) p (n+2) xii i — _ _ n ( 1 )
I p(o—l) p(n) p(n+l) p(n+2) xu2 _ _ _ m ( 2 )
2 p(n—l) p(n) p(n+1) p(n+2) xu3 _ _ n(3)
3 p(n—l ) p(n) p(n+l ) p(n+2) xu4 _ _ _ m ( 4 )
A p(n) p(n+l ) p (n+2) p(n+3) xul _ _ _ n (S)
5 p(n) p (n-i-l ) p (n#2) p(n+3) xu2 _ _ r i ( 6 )
6 p (n) p(rt+l ) p (n+2) p(n+3) xu3 

— _ — 
m (7)

7 p(n) p(n+b) p(n+2) p (n-4-3) xu4 _ _ _
8 p(n+l ) p(n+2) p(n+3) p(n+4) xul 

— _ _

9 p (n+1) p(n+2) p(n+3) p(n+4) xu2 — — m ( l O )
10 p(n+l ) p (n+2) p (n+3) p (n+4) xu3 — _ _ m ( 1 1 )
11 p(n+l) p(n-l-2) p (n+3) p(n+4) xu4 _ — _ ri (12)

508 p(128) p(129) p(l30) p (l3l) xul T~~~~5Q9 )

509 p (l28) p(l29) p(l )O) p(131) xu2 — — r i ( 5 1 0 )
510 p(l28) p(l29) p(l30) p (13l) xu3 _ _ 

— 
m ( 511)

511 p(l28) p(129) p(l30) p(l31 ) xu4 
— _ ri (512)

*1

datariap: PROCCDURE(xu , segno);

1* Rep lica te n_plxe]s/4 pixel value s four t imes each
to generate the vector pixnO . Also replicate the
incrementa tion values thro ug h n_p ixe l s  c l~ ment vector .

*1

D E CLA R E ( i , segno) CARDINAL (1b);
DECLARE last 4 RANGE (n_pixels—3 : n_p ixels);
i 0 ;
DO WHIL E (i < n_p i x e l s ) ;

C—12
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Sample Program Report

u [i+-l J = xu (~l O D ( i ,4)+l 1
p ix nO[ i+ 1) = p ix((FLOOR (i/4) +l)*segno)
i = i + I ;

EN000;

1* Generate vector s p ixn , p ix o l , pixn2. moving each up four
elem ents and append next pixel value on the end
repl icated four tines .

*1

pixn(*) = pixnO (5:DI!i (pixno)l;
pixn (last 4) = pix~FL.OOR (i!4)*scgnn+1];

pixnl[*1 = pixn 15:DI~1(p ixn)] ;
p ixnl[last 4j = PIX [FLOOP (i/4)*segno+2J;

pixn2(*) pixnlf5:DID (pixnl)]
pixn2 [las t 4 J  = PIX [FLOOP (i/4)*segn o~+-3] ;

ENDPROC datanap;

3.4 Cubic Routines

It
CUII IC f u n c t i o n s :

1— Us es vec tor v a l u e s prod uced in DA TM IAP.
( P 1X NO , PIXN , PIXN 1, PIX~ 2, U)

2— Performs cubic algori thm to generate
In termediate pixel values for the magnified
image (Three programming methods are illustrated.)

3— Re turns fina l magnified p ixel vector (512 p ixe ls)
t”  MAINPROC for output. (MPIXN )

Formula for cubic convolution :

r(o) = (((p(n)—p (n—1)+p(n+2)—p(n+l)) *(u (n)_1)
—p(n)+p(n—l)) *u(n) +p(n+1)—p(n—i)) *u (n )
+p ( n )

In progr am :

~ PIX ~ m ( n )
P I X N O  = p(n—1 )
P1X2 = p ( n )
prx~;i = p(n+1)

C—1 3
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Sample Prog ran Repo

PIXN2 p(n+2)
U • u ( n )
where n ranges from I to 512

*1

3.4.1 Cubic  ?lethod Number I

/*NJ~THoI) 1*,

1* Compiler controls intermediate storage and order of
computation(wlierc not restricted by parentheses).
Accuracy of intermedia te values is language
de f ined  and c o n t r o l l e d  by the c om p i l e r .

*1

cubic: PROCEDLIR !;;m p i x n = (( (  p ixn2 — pixn l + pixn — p i x n O ) * ( u  — 1) — p ixn
+ pixnO )tu + pixn i — pixnO )tu + pixo ;

RETURN;
E~DPROC cubic ;

3.4 .2  Cubic  f le thod Number  2

/* TETH()fl 2~/

1* Program controls interm ediate storage and order of computation *1

cubic: PROCEDURE;
DECLARE (bI), bi . b6)(n_pixels) FIXED (8) MDIOIY(nda),

b 2 ( n  p ix e l s )  F I X E J ) ( 9 )  flE~t O R Y ( n d a ) ,
(b3 , b4 )(n _pixels) FIXED (14 , 4)  N L~D O P Y ( n d a ) ,
(b S , b8)(r pixels) FIXED (19 , 8) NENOI1Y ( mda ) ,

h 7 (n _p ixels) FIXEJ)(13 , 4) ME~lORY( r,da);

b fl  p i x n 2  — p i xn l ;
b I = — p ixmo ;
b2 bO + b I ;
b3 — b2 *(u — 1) ;
bL. — b3 — b i ;
b5 • b4 * U;

b6 pixo l — p ixno;
b7 b5 + b6;
b8 = b7 * u;

i4 C— 16
APPENDIX
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San p ie  j r  up r an  P ; r t

np ixn  = hR + p i x o ;
RI ; I L I I ~,

ENDPRO C c u b i c ;

3 .4 .3  Cubic  M e t h o d  N u m b e r  3

/ * I F T U O D  3*/

/* P r o g r a m  c o n t r o l s  i n t e r m e d i a t e  s t o r a g e , o r d e r  of
c o m p u t a t i o n  and  nda  m e nor y  a l l o c a t i o n .
The e f f e c t  of t h i s  is very sim ilar to method 1
as done b y t h e  comp iler. */

c u b i c :  P R O C E D U R E ;
DECLARE ( b D ,  h i  , b 6 )  (o _p ixe l  s) F I X E 1 ) ( 8 )  CONTROLLED ~‘E 1 D R Y ( m d a )

b 2 ( n  p i xe l s )  F I X E D ( 9 )  C ( E T R D L L E P  I F ’I O R Y ( n d a ) ,
(h3 , b 4 )  ( r p i x e l s)  F I X E I ) (  14 , 4)  C O N TE O L L E !)  M E : I D E Y ( m d a )
( b 5  , hR ) (n _n i xe l  s ) F ’ I X E ’ )  ( 1 9 , H )  C ) ~;TPO LL ~ D DE; I D R Y ( n d a

b 7 ( n  p i x e l s )  F I X F ; D ( 1 3 , 4 )  CDN T 9O LL E1 )  DE ’I OR Y (r i d a)
ALL U : A 1 E  h O ;

= p i x n 2  — p i x n l ;
AL l  C- ~ ‘ E h i  b 2 ;

S h i  = n i x n  — p ix ’Oi ;
b2 = bh + h i ;

F!- : .  b r ;
ALLV C \T h3;

= ‘ - - ( u  — 1 ) ;
Fr~tJ I-

h- . = I i  — h i ;
F R E E  h i , h I ;
AL LU CAI !: b5;

b, = b~ *

F E l L bA ;
A LLD CA TL h~ , b7

bf = p i x n l  — p ixnU ;
h 7 = b5  + b 6 ;

FREE h6 , 1,5;
ALLOCATE h 8 ;

hP = h 7  *

F E L L  h 7 ;
rp lx n  = hR + p ixn;

hE ;
RI ~ ‘ E L ;
ENDI’RO C c u b i c

a, (—1 5
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User Library Samp le Procedure

A Data  Format t ing  P r ocedu r e

list_array : PROCEDURE (x, wide);

/* List a two—d’mensjonal floa t array on th e standard *1
1* output print file (list_ou tput), “w ide ” items per A ,

/* line (or less if they will not fit) */

DECLARE x(*, *) FLOAT(*), wide FIXED(15);

/* buffer for one line of output *1

DECLARE line_size FIXED(15) CONSTAI T INITIAL(128)
DECLARE sl CHARACTER(line_sizc) VARYING ;
DECLARE (i , j ,  wid th) FIXED(15);

I*cha ract ers  to disp lay one “FLOAT ” i t e m  ~/
4 w i d t h  VAll~1lAR (x(l, 1]) +1;

DO ± I TO HBO UN D(x , 1) ;
si ‘ROW ‘ VARCUAR (i);
k = 0;
DO j = 1 TO HB OUN D(x , 2 ) ;

IF LE N GT IJ ( s l )  + w i d t h  > line_siz,~ I It ~~ wide
THEN

WRITE FILE( l i s t_ou tput) FRO1I (si);
si = ‘ ‘ ;
k 0;

EN DIF;
si — sl H VARCHAR(x [i, j i )  H ‘ ‘
k — k + l ;

ENDDO ;
IF L EN G T I I ( s i )  > 4 THEN

WRITE FILE(list_output) FROII(sl);
ENDDO;

E~ DPRO C l i s t_a r r ay ;

D—i
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M!T1JC SY!TDI

IASI uwrrs~
_9~isnttty U nit ~~~~~ ibo~ - - Formula

length metre m
mus kilogram kg
on, second a

electric CwT~~t amp.r, A
thermodynamic temperetu,, kelvin K ~~.

amouot of su~~tanca mole mol
lum~noua intensity candela cd

SUPPU~WV’ifTA&Y IJNITS
plane angl. radian tad
solid sngh. sterad isa at

D~JJVW UNITS:
Acceler.tioa metre per second squared - rn/a
activity (of . radioecnve sowte~ d:sinte ~~ati on per second -.. (disint .~ e*~o~Ye
angu lar accelera tion radian per second squared -.. rad/~anguhu volooty radi an per second - - .  red/s
area Square metre -- m
density kilogram per cubic metre - - kgim

• electric capacitance farad F A &V
electrical coaductanc. siemens S A/V
elect ric fl.ld strength volt p.r metie Vim
electric inductance henry II V a/A
electric pot ential differenc, volt V W1A
electric resistanc , ohm VIA
elec tromotive force volt V W’A
energy joule I N-rn
entropy joule per kelvin - - -

-) force newton N kg.nVe
- frequency hertz Hz (cyc lalls

illuminanc. hux lx lmirn
4 luminance candela per square metre -- - cd/tn

Ium i nou.. flux lumen liii

j magnetic field strength ampere per metre -. Aim
magnetic flux weber Wb V•s
magnetic flux densi ty tesli I Wbftn
magnetomouve forte ampere A
powe, watt W is
pressure pascal Pa Nim
quantity of electricity coulomb C A..
quantity of hea t joule N-rn
radiant intensity w a t t  per sterad ian - -  W at
sp ecif ic heat joule per kilogr.m.kelvin - - Jikg.K
stre ss pascal Pa Nim

F thenii.ei conductivity watt per metre-kelvin ~.. W/m.K
velnuty metre per second n/s
vi sc osity, dynam ic pascal-second ~. Ps-a
viscosity, kinematic square metre per second - m’s
vo l tag e vo lt V W A
volume cubic met re m
wavenuui~~ reciprocal metre - - •  (WSV.Wifl
work joule I N.m

• SI PW~~ES~
, j jult iplitati on _ F~ctora I’reflx si Sym~~
1 000 000 000 000 • 10” isr e 1’

l 000 000 0 0 0 — 1 0  ,~ga1 000 000 • 10’ mega U
I 000 = 10’ kilo k

100 • to ’ hscto~1 0 =  to’ doka’ de
0 2 — 1 0 ’ dec1~ d

001 • 10— i i;efl1t~ C
0001 = I 0 ”  mu ll at

0 000 001 • 10 ’  micro as
0 000 000 001 = 10 ’  nsno a

0 000 000 000 001 - 10— i
(1 000 000 000 (XJ0 001 = 1 0 ”  (emto

0 000 000 000 000 0(10 001 = 10 ’. •tto a
To be avoided where pateibi. 1U.t GOVERNMENT P~ lNTING 0FFI~~ : tPi i-ne-am/ui
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MISSION
of

Rome Air Development Center

RP~X plans and conducts research, exploratory and advanced
developnent pr ograms in command, control , and conviunications
(C3) activities, and in the C3 areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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